J. Jespersen, J. Fitz-Randolph, From
Sundials to Atomic Clocks: Understanding Time and Frequency (Dover
Publications, Inc., Mineola, New York, 1999), Chap. 3.
T. Jones, Splitting the Second: The Story
of Atomic Time (Philadephia, PA, Institute of Physics, 2000), Chap. 2.
G.S. Hawkins, J.B. White, Stonehenge
Decoded (Hippocrene Books, New York, 1988).
E.G. Richards, Mapping Time: The Calendar
and its History (Oxford University Press, Oxford, 1998), Chap. 2.
Explanatory Supplement to the Astronomical
Ephemeris and the American Ephemeris and Nautical Almanac, Her Majesty’s Stationary
Office, London, 1961, Chap. 14.
F. Cabrol, The Catholic
Encyclopedia (Robert Appleton Company, New York, 1912), Chap. 13.
Explanatory Supplement to the Astronomical
Ephemeris and the American Ephemeris and Nautical Almanac, Her Majesty’s Stationary
Office, London, 1961, Chap. 3.
L.
Essen, J.V.L.
Parry, An Atomic Standard of Frequency
and Time Interval: a Cesium Resonator, Nature 176, 280-282 (1955.) See also
The Cesium Resonator as a Standard of Frequency and Time, Phil.
Trans. Roy. Soc. London A
250, 45-69 (1957)
by the same authors.
ADS
Article
Google Scholar
W.
Markowitz, R. Glenn Hall, L. Essen and
J.V. L. Parry, Frequency of Cesium in Terms of Ephemeris Time,
Phys. Rev. Lett.
1, 105-107
(1958).
ADS
Article
Google Scholar
D.D. McCarthy, P.K. Seidelmann, Time: From
Earth Rotation to Atomic Physics (Weinheim, Germany, Wiley-VCH GmbH), Chap. 12.
S.
Leschiutta, The Definition of the Atomic
Second, Metrologia
42, S10-S19
(2005).
ADS
Article
Google Scholar
Resolution 1 of the 13th Conférence Générale des
Poids et Mesures (CGPM), available at: www.bipm.org/en/CGPM/db/13/1
(1967).
Resolution 9 of the 13th Conférence Générale des
Poids et Mesures (CGPM), available at:www.bipm.org/en/CGPM/db/11/9
(1960).
T.P.
Heavner, E.A.
Donley, F.
Levi, G.
Costanzo, T.E.
Parker, J.H.
Shirley, N.
Ashby, S.
Barlow and S.R.
Jefferts, First accuracy evaluation of
NIST-F2, Metrologia
51, 174-182
(2014).
ADS
Article
Google Scholar
W.M.
Itano, L.L.
Lewis and D.J.
Wineland, Shift of 2S1/2 Hyperfine Splittings due to
Blackbody Radiation, Phys. Rev. A
52, 1233-1235
(1982).
ADS
Article
Google Scholar
T.F.
Gallagher, W.E.
Cooke, Interactions of Blackbody
Radiation with Atoms, Phys. Rev. Lett.
42, 835-839
(1979).
ADS
Article
Google Scholar
G.
Becker, Uncertainty of Cesium-Beam Time
Standards due to Beam Asymmetry, IEEE Trans. Inst.
Meas.
29, 297-300
(1980).
ADS
Article
Google Scholar
B.
Guinot, Application of General
Relativity to Metrology, Metrologia
34, 261-290
(1997).
ADS
Article
Google Scholar
N.F. Ramsey, Molecular Beams (The
Clarendon Press, Oxford, 1956), Chap. XIV.
N.F. Ramsey, Molecular Beams (The
Clarendon Press, Oxford, 1956), Chap. X.
H.J.
Gerritsen, G.
Niehuis, Multidirectional Doppler
pumping: A new method to prepare an atomic beam having a large fraction of excited
atoms, Appl. Phys. Lett.
26: 347-349
(1975).
ADS
Article
Google Scholar
M.
Arditi, J.L.
Picque, A cesium beam atomic clock using
laser optical pumping, Preliminary tests, J. Phys.
Lett.
41: L379-L381
(1980).
Article
Google Scholar
C.
Salomon, J.
Dalibard, W.
Philips, A. Clairon and S. Guellati,
Laser cooling of cesium atoms below 3 μK, Europhys.
Lett.
12: 683-688
(1990).
ADS
Article
Google Scholar
J.R.
Zacharias, Precision Measurements with
Molecular Beams, Minutes of the 1954 Annual Meeting of the American Physical Society,
28-30 January, 1954, Phys. Rev.
94: 751 (1954).
Google Scholar
A.
Clairon, P.
Laurent, G.
Santarelli, S.
Ghezali, S.N.
Lea and M.
Bouhara, A cesium fountain frequency
standard: preliminary measurements, IEEE Trans. Instr.
Meas.
44: 128-131
(1995).
Article
Google Scholar
T.P.
Heavner, E.A.
Donley, F.
Levi, G.
Costanzo, T.E.
Parker, J.H.
Shirley, N.
Ashby, S.
Barlow and S.R.
Jefferts, First accuracy evaluation of
NIST-F2, Metrologia
51: 174-182
(2014).
ADS
Article
Google Scholar
J.
Guéna, P.
Rosenbusch, Ph.
Laurent, M.
Abgrall, D.
Rovera, G.
Santarelli,
M.E.
Tobar, S.
Bize and A.
Clairon, Demonstration of a Dual Alkali
Rb/Cs Fountain Clock, IEEE Trans. Ultrasonics, Ferroelectrics,
and Frequency Control
57, 647 (2010).
Article
Google Scholar
The International System of Units, Bureau
International des Poids et Mesures, Appendix 2, “Practical Realization of the Unit of
Time”, Published online as SIApp2sen.pdf at: www.bipm.org.
J.L.
Hall, Nobel Lecture: Defining and
measuring optical frequencies, Rev. Mod. Phys.
78: 1279-1295
(2006).
ADS
Article
Google Scholar
L.
Hollberg, S.
Diddams, A.
Bartels, T.
Fortier and K.
Kim, The Measurement of Optical
Frequencies, Metrologia
42, S105-S124
(2005).
ADS
Article
Google Scholar
A.D.
Ludlow, M.M.
Boyd, J.
Ye, E.
Peik and P.O.
Schmidt, Optical Atomic
Clocks, Rev. Mod. Phys.
87, 637-701
(2015).
ADS
Article
Google Scholar
S.
Droste, F.
Ozimek, Th.
Udem, K.
Predehl, T.W.
Hasch, H.
Schnatz, G.
Grosche and R.
Holzwarth, Optical Frequency Transfer
over a Single-Span 1840 km Fiber Link, Phys. Rev. Lett.
111, 110801 1-5
(2013).
Article
Google Scholar
L.C. Sinclair, F.R. Giorgetta, W.C. Swann, E.
Baumann, I.R. Coddington and N. Reynolds Newbury, The impact of turbulence on high
accuracy time-frequency transfer across free space, Optical Society of America, Conference
on Imaging and Applied Optics, Arlington, Virginia, June 23-27, 2013, available at:
http://dx.doi.org/10.1364/PCDVT.2013.PTu2F.2
J. Flury, Relativistic Geodesy with Clocks,
Proc. 2015 Joint Conference of the IEEE International Frequency Control Symposium and the
European Frequency and Time Forum, Denver, Colorado, 12–16 April 2015, in press.
Web page of The Royal Museum at Greenwich,
available at: http://www.rmg.co.uk.
B. Guinot, History of the Bureau
International de l’Heure, Astronomical Society of the Pacific, Conference
Series, edited by S. Dick, D. McCarthy and B. Luzum (2000), Vol. 208, pp.
175-184.
C. Audoin, B. Guinot, Les Fondements de la
mesure du temps (Masson, Paris, 1998).
A. Lambert, Le Bureau International de l’heure,
son rôle, son fonctionnement, Annuaire du Bureau des Longitudes, Paris, Gauthier-Villars,
1940.
G. Bigourdan, A. Lambert, N. Stoyko and B. Guinot,
Bulletin Horaire, Paris, Observatoire de Paris, 1922-1967 (19 volumes).
G. Bigourdan, Corrections des signaux horaires
déterminées par le Bureau International de l’heure, Paris, Gaithier-Villars, 1920-1924.
Wireless Time Signals: Radio-Telegraphic Time and
Weather Signals Transmitted from the Eiffel Tower and Their Reception, published by Paris
Bureau of Longitudes, E & F. N. Spon Ltd., New York, 1915.
M.A.
Lombardi, G.K.
Nelson, WWVB: A Half Century of
Delivering Accurate Frequency and Time by Radio, J. Res. of
NIST
119, 25-54
(2014). See also the references in this article.
Article
Google Scholar
H.J. Walls, QST Magazine, October, 1924, p. 9.
R.T.
Cox, Standard Radio Wavemeter, Bureau of
Standards Type R 70B, J. Opt. Soc. Am.
6, 162-168
(1922).
ADS
Article
Google Scholar
C. Moon, A Precision Method of Calibrating a
Tuning Fork by Comparison with a Pendulum, available on the web at:
dx.doi.org/10.6028/jres.004.016 (1929).
Lissajou Figures, Encyclopedia Britannica. See
also, J.D. Lawrence, A Catalog of Special Plane Curves (Dover, New York,
1972), pp. 178-183.
W.G. Cady, United States Patent 1,472,583, October
30, 1923.
Captain J.L. Jayne, The Naval Observatory Time
Service and How to Use its Radio Signals, The Keystone: Annual Convention of the American
National Retail Jewelers’ Association, 1913, pp. 129-135.
A.H. Orme, Regulating 10 000 Clocks by Wireless,
Technical World Magazine, October 1913, pp. 232-233.
www.navy-radio-com/commsta/cutler.htm. See also Wikipedia article “VLF
Transmitter Cutler”.
T.H. White, D.C. Washington, AM Station History,
2006. Web page at EarlyRadioHistory.us.
W.G. Cady, United States Patent 1,450,246, April,
1923.
G. Hefley, The Development of Loran-C Navigation
and Timing, National Bureau of Standards Monograph 129, Washington, D. C., Government
Printing Office, 1972.
B.
Guinot, E. Felicitas Arias, Atomic
Time-Keeping from 1955 to the present, Metrologia
42, S20-S30
(2005).
ADS
Article
Google Scholar
B.
Guinot, Some Properties of Algorithms
for Atomic Time Scales, Metrologia
24, 195-198
(1987).
ADS
Article
Google Scholar
R.A.
Nelson, D.D.
McCarthy, S.
Malys, J.
Levine, B.
Guinot, H.F.
Fliegel, R.L.
Beard and T.R.
Bartholomew, The Leap Second: Its
History and Possible Future, Metrologia
38, 509-529
(2001).
ADS
Article
Google Scholar
D.D. Davis, B.E. Blair, J.F. Barnaba, Long-term
Continental U. S. Timing System via Television Networks, IEEE Spectrum 8:
41-52 (1971).
Article
Google Scholar
Annual Report on Time Activities of the BIPM,
Sèvres, France, BIPM, 2008, Vol. 3. Table 1. The more recent reports are available on line
at: www.bipm.org/en/bipm/tai/annual-report.html.
IERS Bulleting A is available at: http://datacenter.iers.org/eop/-/somos/5Rgv/latest/6 and can also be
received by e-mail with a request to http://maia.usno.navy.mil/docrequest.html.
IERS Bulletin C is available at: http://datacenter.iers.org/eop/-/somos/5Rgv/latest/16 and can also be
received by e-mail.
http://www.itu.int/net/pressoffice/press˙releases/2012/03.asp
J.
Levine, The Statistical Modeling of
Atomic Clocks and the Design of Time Scales, Rev. Sci.
Instr.
83, 012201-28
(2012).
Google Scholar
G.
Petit, F.
Arias, A. harmegnies, G. Panfilo and L.
Tisserand, UTCr: A rapid realization of UTC, Metrologia
51, 33-39 (2014).
ADS
Article
Google Scholar
R.B. Blackman, J.W. Tukey, The Measurement
of Power Spectra (Dover Publications, New York, 1958).
Circular T is published monthly and
is available on the BIPM web site as: ftp://ftp2.bipm.org/pub/tai//publication/cirt/
G.
Panfilo, E.F.
Arias, Algorithms for TAI, IEEE Trans.
Ultrasonics, Ferroelectrics and Frequency Control
57, 140-150
(2010).
Article
Google Scholar
G.
Panfilo, A.
Harmegnies and
L.
Tisserand, A New Prediction Algorithm
for the Generation of International Atomic Time,
Metrologia
49, 49-56 (2012).
Article
Google Scholar
J. Azoubib, M. Granveaud and B. Guinot,
Estimation of the Scale Unit Duration of Time Scales, Metrologia 13:87-93
(1977).
ADS
Article
Google Scholar
E.K.
Smith, S.
Weintraub, The constants in the equation
for atmospheric refractive index at radio frequencies, Proc.
IRE
41, 1035-1037
(1953).
Article
Google Scholar
B.E. Blair, Time and Frequency Dissemination: An
overview of Principles and Techniques, National Bureau of Standards Monograph 140, Chapter
10, Annex A, Washington, DC, US Government Printing Office, 1974.
P. Misra, P. Enge, Global Positioning
System: Signals, Measurements, and Performance (Massachusetts, Ganga-Jamuna
Press, Lincoln, 2006). Chap. 2.
International GNSS Service, available on the web
at: http://www.igs.org. The service provides a number of precise ephemerides and
clock products with delays ranging from a few hours for the “Ultra-Rapid” ephemerides
derived from observations to 12–18 days for the “Final” products. The accuracies of the
final products are approximately 2.5 cm for the satellite orbits and 75 ps RMS for the
satellite and stations clocks.
E.D. Kaplan, C.J. Hegarty, Understanding
GPS: Principles and Applications, 2nd edn., edited by Boston M.A. (Artech
House, 2006), Chap. 7, p. 311ff.
J. Guo, R.B. Langley, A New tropospheric
propagation delay mapping function for elevation angles down to 2°, Proc. Of the Institute of
Navigation ION/GPS Conference, Portland, Oregon, Sept. 9–12, 2003.
A.E.
Niell, Global mapping functions for the
atmosphere delay at radio wavelengths, J. Geophys. Res.
B
2, 3227-3246
(1972).
Google Scholar
P. Axelrad, K. Larson and B. Jones, Use of the
correct satellite repeat period to characterize and reduce site-specific multipath errors,
Proceedings of the 18th International Technical Meeting of the Satellite Division of the
Institute of Navigation (ION GNSS 2005), Long Beach California, Sept. 13-16, 2005, pp.
2638-2648.
G. Hefley, The Development of Loran-C Navigation
and Timing, NBS Monograph 129, Boulder, Colorado, National Bureau of Standards, October,
1972.
D.D.
Davis, J.L.
Jespersen and
G.
Kamas, The use of television signals for
time and frequency dissemination, Proc. IEEE
58, 931-933
(1970).
ADS
Article
Google Scholar
D.W.
Allan, Time transfer using nearly
simultaneous reception times of a common transmission, Proc.
IEEE
60, 625-627
(1972).
ADS
Article
Google Scholar
G.
Petit, Z.
Jiang, GPS all in view time transfer for
TAI computation, Metrologia
45, 35-45 (2008).
ADS
Article
Google Scholar
D.L. Mills, Computer Network Time
Synchronization, 2nd edn. (CRC Press, Boca Raton, Florida), p. 64ff.
Z. Jiang, H. Konaté and W. Lewandowski, Review
and Preview of Two-way Time Transfer for UTC generation – from TWSTFT to TWOTFT, Proc.
Joint Conference of the Frequency Control Symposium and the European Time and Frequency
Forum, 2013, pp. 501–504. Available on the web at: http://www.eftf.org/proceedings/proceedingsEFTF2013.pdf.
Z. Jiang, G. Petit, Combination of TWSTFT and
GNSS for accurate UTC time transfer, Metrologia 46: 305-314 (2009).
ADS
Article
Google Scholar
P. Misra, P. Enge, Global Positioning
System: Signals, Measurements, and Performance (Massachusetts, Ganga-Jamuna
Press, Lincoln, 2006). Chap. 2, p. 48ff.
J.C. Eidson, Measurement, Control, and
Communication using IEEE 1588 (Springer-Verlag, London, 2006), Chap. 5.
M.
Rost, D.
Piester, W.
Yang, T.
Feldmann, T. Wübbena and A. Bauch, Time transfer
through optical fibers over a distance of 73 km with an uncertainty below 100 ps,
Metrologia 49: 772-778 (2012).
ADS
Article
Google Scholar
J.A. Barnes, D.W. Allan, Two papers on the
statistics of precision frequency generators, National Bureau of Standards Technical
Report 8878, 1965. Available from the publications list at: http://tf.nist.gov, publication 224.
D.W. Allan, J.A. Barnes, A modified Allan variance
with increased oscillator characterization ability, Proc. 35th Annual Frequency
Control Symposium, 1981, pp. 470-475. Available from the publications list at:
http://tf.nist.gov, publication 560.
D.A. Howe, A total estimator of the Hadamard
function used for GPS operations, Proc. 32nd Precise Time and Time Interval
Planning and Applications Meeting, Nov. 29, 2000, pp. 255-268. Available from
the publications list at: http://tf.nist.gov, publication 1431.