The fifth force: A personal history


On January 6, 1986, a paper written by our group appeared in Physical Review Letters entitled “Reanalysis of the Eötvös Experiment”. In that Letter we reanalyzed a well-known 1922 paper by Eötvös, Pekár, and Fekete (EPF) which compared the accelerations of samples of different composition to the Earth. Our surprising conclusion was that “Although the Eötvös experiment has been universally interpreted as having given null results, we find in fact that this is not the case”. Two days later a front page story appeared in the New York Times under the headline “Hints of 5th Force in Universe Challenge Galileo’s Findings”, and so was born the concept of a “fifth force”. In this personal history I review the pre-history which motivated our paper, and discuss details of our reanalysis of the EPF paper that have not been presented previously. Our work led to illuminating correspondence with Robert Dicke and Richard Feynman which are presented here for the first time. I also discuss an interesting meeting with T.D. Lee, one of whose papers with C.N. Yang provided part of the theoretical motivation for our work. Although there is almost no support from the many experiments motivated by the EPF data for a fifth force with properties similar to those that we hypothesized in our original paper, interest in the EPF experiment continues for reasons I outline in the Epilogue.

This is a preview of subscription content, access via your institution.


  1. 1.

    Adelberger, E.G., J.H. Gundlach, B.R. Heckel, S. Hoedl and S. Schlamminger. 2009. Torsion balance experiments: A low-energy frontier of particle physics. Progress in Particle and Nuclear Physics 62: 102-134.

    ADS  Article  Google Scholar 

  2. 2.

    Antoniadis, I., Arkani-Hamed, S. Dimopoulos and G. Dvali. 1998. New dimensions at a millimeter to a fermi and superstrings at a TeV. Physics Letters B 436: 257-263.

    ADS  Article  Google Scholar 

  3. 3.

    Arkani-Hamed, N., S. Dimopoulos and G. Dvali. 1999. Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Physical Review D 59: 086004.

    ADS  Article  Google Scholar 

  4. 4.

    Aronson S.H., G.J. Bock, H.-Y. Cheng and E. Fischbach. 1982. Determination of the fundamental parameters of the \(K^0 - \bar K^0\) system in the energy range 30–110 GeV. Physical Review Letters 48: 1306-1309.

    ADS  Article  Google Scholar 

  5. 5.

    Aronson S.H., G.J. Bock, H.-Y. Cheng and E. Fischbach. 1983a. Energy dependence of the fundamental parameters of the \(K^0 - \bar K^0\) system: Experimental analysis. Physical Review D 28: 476-494.

    ADS  Article  Google Scholar 

  6. 6.

    Aronson S.H., G.J. Bock, H.-Y. Cheng and E. Fischbach. 1983b. Energy dependence of the fundamental parameters of the \(K^0 - \bar K^0\) system: Theoretical formalism. Physical Review D 28: 495-523.

    ADS  Article  Google Scholar 

  7. 7.

    Aronson, S.H., H.-Y. Cheng, E. Fischbach and W. Haxton. 1986. Experimental signals for hyperphotons. Physical Review Letters 56: 1342-1345; 56: 2334(E).

    ADS  Article  Google Scholar 

  8. 8.

    Asano, Y. et al. 1981. Search for a rare decay mode \(K^ + \to \pi ^ + \nu \bar \nu\) and axion. Physics Letters B 107: 159-162.

    ADS  Article  Google Scholar 

  9. 9.

    Asano, Y. et al. 1982. A new experimental limit on K+ → π+γγ. Physics Letters B 113: 195-198.

    ADS  Article  Google Scholar 

  10. 10.

    Bartlett, D.F. and S. Lögl. 1988. Limits on an electromagnetic fifth force. Physical Review Letters 61: 2285-2287.

    ADS  Article  Google Scholar 

  11. 11.

    Bartlett, D.F. and W.L. Tew. 1989a. Possible effect of the local terrain on the Australian fifth-force measurement. Physical Review D: 40: 673-675.

  12. 12.

    Bartlett, D.F. and W.L. Tew. 1989b. Possible effect of the local terrain on the North Carolina tower gravity experiment. Physical Review Letters 63: 1531.

    ADS  Article  Google Scholar 

  13. 13.

    Bartlett, D.F. and W.L. Tew. 1990. Terrain and geology near the WTVD tower in North Carolina: Implications for non-Newtonian gravity. Journal of Geophysical Research 95: 17, 363-17, 369.

    Google Scholar 

  14. 14.

    Bell J.S. and J.K. Perring. 1964. 2π decay of the K 02 meson. Physical Review Letters 13: 348-349.

    ADS  Article  Google Scholar 

  15. 15.

    Bernstein J., N. Cabibbo and T.D. Lee. 1964. CP invariance and the 2π decay mode of the K 02 . Physics Letters 12: 146-148.

    ADS  Article  Google Scholar 

  16. 16.

    Bizzeti, P.G. 1986. Significance of the Eötvös method for the investigation of intermediate-range forces. Il Nuovo Cimento 94B: 80-86.

    ADS  Article  Google Scholar 

  17. 17.

    Bizzeti P.G. et al. 1989. Search for a composition- dependent fifth force. Physical Review Letters 62: 2901-2904.

    ADS  Article  Google Scholar 

  18. 18.

    Bod, L., E. Fischbach, G. Marx and M. Náray-Ziegler. 1991. One hundred years of the Eötvös experiment. Acta Physica Hungarica 69: 335-355.

    Google Scholar 

  19. 19.

    Bordag, M., G.L. Klimchitskaya, U. Mohideen and V.M. Mostepanenko. 2015. Advances in the Casimir Effect. Clarendon Press, Oxford.

  20. 20.

    Boslough J. 1989. Searching for the secrets of gravity. National Geographic 175 (5): 563-583.

    ADS  Google Scholar 

  21. 21.

    Bouchiat, C. and J. Iliopoulos. 1986. On the possible existence of a light vector meson coupled to the hypercharge current. Physics Letters B 169: 447-449.

    ADS  Article  Google Scholar 

  22. 22.

    Boynton, P.E. 1988. How well do we understand the torsion balance? In: 5th Force-Neutrino Physics, Proceedings of the XXIIIrd Rencontre de Moriond (VIIIth Moriond Workshop), O. Fackler and J. Trân Thanh Vân (Eds.), edited by Editions Frontiéres, Gif-sur-Yvette, pp. 431-444.

  23. 23.

    Boynton, P.E., D. Crosby, P. Ekstrom and A. Szumilo. 1987. Search for an intermediate-range composition-dependent force. Physical Review Letters 59: 1385-1389.

    ADS  Article  Google Scholar 

  24. 24.

    Braginskii V.B. and V.I. Panov. 1972. Verification of the equivalence of inertial and gravitational mass. Soviet Physics JETP 34: 463-466.

    ADS  Google Scholar 

  25. 25.

    Cavasinni V., E. Iacopini, E. Polacco, G. Stefanini. 1986. GalileoÕs experiment on free-falling bodies using modern optical techniques. Physics Letters A 116: 157-161.

    ADS  Article  Google Scholar 

  26. 26.

    Chardin G. 1990. CP violation: A matter of gravity? In: CP Violation in Particle and Astrophysics, J. Trân Thanh Vân (Ed.), Editions Frontiéres, Gif-sur-Yvette, pp. 377-385.

  27. 27.

    Chardin G. 1992. CP violation. A matter of (anti) gravity? Physics Letters B 282: 256-262.

    ADS  Article  Google Scholar 

  28. 28.

    Chen, Y.-J. et al. 2014. Isoelectronic measurements yield stronger limits on hypothetical Yukawa interactions in the 40-8000 nm range. arXiv:1410.7267v1.

  29. 29.

    Chu, S.Y. and R.H. Dicke. 1986. New force or thermal gradient in the Eötvös experiment? Physical Review Letters 57: 1823-1824.

    ADS  Article  Google Scholar 

  30. 30.

    Colella, R., A.W. Overhauser and S.A. Werner. 1975. Observation of gravitationally induced quantum interference. Physical Review Letters 34: 1472-1474.

    ADS  Article  Google Scholar 

  31. 31.

    Cornaz, A., B. Hubler and W. Kündig. 1994. Determination of the gravitational constant G at an effective interaction distance of 112 m. Physical Review Letters 72: 1152-1155.

    ADS  Article  Google Scholar 

  32. 32.

    De Bouard, X., D. Dekkers, B. Jordan, R. Mermod, T.R. Willitts, K. Winter, P. Scharff, L. Valentin, M. Vivargent and M. Bott-Bodenhausen. 1965. Two-pion decay of K 02 at 10 GeV/c. Physics Letters 15: 58-61.

    ADS  Article  Google Scholar 

  33. 33.

    Decca, R.S. et al. 2005a. Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Annals of Physics 318: 37-80.

    ADS  MATH  Article  Google Scholar 

  34. 34.

    Decca, R.S. et al. 2005b. Constraining New Forces in the Casimir Regime Using the Isoelectronic Technique. Physical Review Letters 94: 240401.

    ADS  Article  Google Scholar 

  35. 35.

    Dicke, R.H.. 1961. The Eötvös Experiment. Scientific American 205 (6): 81-94.

    Article  Google Scholar 

  36. 36.

    Eckhardt, D.H. et al. 1988. Tower gravity experiment: evidence for non-Newtonian gravity. Physical Review Letters 60: 2567-2570.

    ADS  Article  Google Scholar 

  37. 37.

    Eötvös, R.V., D. Pekár and E. Fekete. 1922. Beiträge zum Gesetze der Proportionalität von Trägheit und Gravität. Annalen der Physik (Leipzig) 68: 11-66.

    Article  Google Scholar 

  38. 38.

    Faller J.E., E. Fischbach, Y. Fujii, K. Kuroda, H.J. Paik and C.C. Speake. 1989. Precision experiments to search for the fifth force. IEEE Transactions on Instrumentation and Measurement 38: 180-188.

    ADS  Article  Google Scholar 

  39. 39.

    Feinberg, G. and J. Sucher. 1968. Long-range forces from neutrino-pair exchanges. Physical Review 166: 1638-1644.

    ADS  Article  Google Scholar 

  40. 40.

    Feinberg, G., J. Sucher and C.-K Au. 1989. The dispersion theory of dispersion forces. Physics Reports 180: 83-157.

    ADS  Article  Google Scholar 

  41. 41.

    Fischbach, E. 1965. Coupling of internal and quantum space-time symmetries. Physical Review 137: B642–B644.

    ADS  MathSciNet  Article  Google Scholar 

  42. 42.

    Fischbach, E. 1980a. Tests of General Relativity at the Quantum Level. In: Cosmology and Gravitation, P.G. Bergmann and V. De Sabbata (Eds.). Plenum, New York, pp. 359-373.

  43. 43.

    Fischbach, E. 1984c. Experimental Constraints on New Cosmological Fields. In: Phenomenology of Unified Theories, H. Galić, B. Guberina and D. Tadić (Eds.), World Scientific, Singapore, pp. 156-180.

  44. 44.

    Fischbach, E. 1996. Long-Range Forces and Neutrino Mass. Annals of Physics 247: 213-291.

    ADS  Article  Google Scholar 

  45. 45.

    Fischbach, E., and B.S. Freeman. 1979. Testing General Relativity at the Quantum Level. General Relativity and Gravitation 11: 377-381.

    ADS  Article  Google Scholar 

  46. 46.

    Fischbach, E. and B.S. Freeman. 1980b. Second-order contribution to the gravitational deflection of light. Physical Review D 22: 2950-2952.

    ADS  Article  Google Scholar 

  47. 47.

    Fischbach, E. and N. Nakagawa. 1984a. Apparatus-dependent contributions to g − 2 and other phenomena. Physical Review D 30: 2356-2370.

    ADS  Article  Google Scholar 

  48. 48.

    Fischbach, E. and N. Nakagawa. 1984b. Intrinsic apparatus-dependent effects in high-precision atomic physics experiments. In: Ninth Interactional Conference on Atomic Physics: Satellite Workshop and Conference Abstracts, edited by R.S. Van Dyck, Jr. and E.N. Fortson, World Scientific, Singapore, pp. 55.

  49. 49.

    Fischbach E. and C. Talmadge. 1988b. The fifth force: An introduction to current research. In: 5th Force-Neutrino Physics. Proceedings of the XXIIIrd Rencontre de Moriond (VIIIth Moriond Workshop), O. Fackler and J. Trâh Thanh Vân (Eds.), Editions Frontiéres, Gif-surYvette, pp. 369-382.

  50. 50.

    Fischbach, E. and C. Talmadge. 1992b. Six years of the fifth force. Nature 356: 207-215.

    ADS  Article  Google Scholar 

  51. 51.

    Fischbach, E. and C. Talmadge. 1992c. Present status of searches for non-Newtonian gravity. In: Sixth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, B.H. Sato and T. Nakamura (Eds.), World Scientific, Singapore, pp. 1122-1132.

  52. 52.

    Fischbach, E. and C.L. Talmadge. 1999. The Search for Non-Newtonian Gravity. AIP Press/Springer, New York.

  53. 53.

    Fischbach, E., B.S. Freeman and W.-K. Cheng. 1981. General-relativistic effects in hydrogenic systems. Physical Review D 23: 2157-2180.

    ADS  Article  Google Scholar 

  54. 54.

    Fischbach, E., H.-Y. Cheng, S.H. Aronson, G.J. Bock. 1982. Interaction of the \(K^0 - \bar K^0\) system with external fields. Physics Letters 116B: 73-76.

    ADS  Article  Google Scholar 

  55. 55.

    Fischbach, E., M.P. Haugan, D. Tadić and H.-Y. Cheng. 1985. Lorentz noninvariance and the Eötvös experiments. Physical Review D 32: 154-162.

    ADS  Article  Google Scholar 

  56. 56.

    Fischbach, E., D. Sudarsky, A. Szafer, C. Talmadge and S.H. Aronson. 1986a. Reanalysis of the Eötvös Experiment. Physical Review Letters 56: 3-6. [Erratum: Physical Review Letters 56: (1427)].

    ADS  Article  Google Scholar 

  57. 57.

    Fischbach, E., D. Sudarsky, A. Szafer, C. Talmadge and S.H. Aronson. 1986b. Fischbach et al. respond. Physical Review Letters 57: 2869.

    ADS  Article  Google Scholar 

  58. 58.

    Fischbach, E. et al. 1986c. A new force in nature? In: Intersections Between Particle and Nuclear Physics, AIP Conference Proceedings No. 150, D.F. Geesaman (Ed.), American Institute of Physics, New York, pp. 1102-1118.

  59. 59.

    Fischbach, E., D. Sudarsky, A. Szafer, C. Talmadge and S.H. Aronson. 1987. The Fifth Force. Proceedings of the XXIII International Conference on High Energy Physics, S.C. Loken (Ed.), World Scientific, Singapore, Vol II, pp. 1021-1031.

  60. 60.

    Fischbach, E., D. Sudarsky, A. Szafer and C. Talmadge. 1988a. Long-Range Forces and the Eötvös Experiment. Annals of Physics (New York) 182: 1-89.

    ADS  Article  Google Scholar 

  61. 61.

    Fischbach, E., G.T. Gillies, D.E. Krause, J.G. Schwan and C. Talmadge. 1992a. Non-Newtonian Gravity and New Weak Forces: an Index of Measurements and Theory. Metrologia 29: 213-260.

    ADS  Article  Google Scholar 

  62. 62.

    Fischbach, E. et al. 1994. New Geomagnetic Limit on the Photon Mass and on Long-Range Forces Coexisting with Electromagnetism. Physical Review Letters 73: 514-519.

    ADS  Article  Google Scholar 

  63. 63.

    Fischbach, E., D.E. Krause, C. Talmadge and D. Tadić. 1995. Higher-order weak interactions and the equivalence principle. Physical Review D 52: 5417-5427.

    ADS  Article  Google Scholar 

  64. 64.

    Fischbach, E. et al. 2001. Testing gravity in space and at ultrashort distances. Classical and Quantum Gravity: 18: 2427-2434.

    ADS  MATH  Article  Google Scholar 

  65. 65.

    Fischbach, E., D.E. Krause, R.S. Decca and D. López. 2003. Testing Newtonian gravity at the nanometer distance scale using the iso-electronic effect. Physics Letters A 318: 165-171.

    ADS  MATH  Article  Google Scholar 

  66. 66.

    Fitch, V.L., M.V. Isaila and M.A. Palmer. 1988. Limits on the existence of a material-dependent intermediate-range force. Physical Review Letters 60: 1801-1804.

    ADS  Article  Google Scholar 

  67. 67.

    Floratos, E.G. and G.K. Leontaris. 1999. Low scale unification, Newton’s law and extra dimensions. Physics Letters B 465: 95-100.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  68. 68.

    Franklin, A. 1993. The Rise and Fall of the Fifth Force. American Institute of Physics, New York.

  69. 69.

    Fuji, Y. 1971. Dilaton and possible non-Newtonian gravity. Nature (Physical Science), 234: 5-7.

    ADS  Google Scholar 

  70. 70.

    Fuji, Y. 1972. Scale invariance and gravity of hadrons. Annals of Physics (New York) 69: 494-521.

    ADS  Article  Google Scholar 

  71. 71.

    Fuji, Y. 1974. Scalar-tensor theory of gravitation and spontaneous breakdown of scale invariance. Physical Review D 9: 874-876.

    ADS  Article  Google Scholar 

  72. 72.

    Fuji, Y. 1975. Spontaneously broken scale invariance and gravitation. General Relativity and Gravitation 6: 29-34.

    ADS  Article  Google Scholar 

  73. 73.

    Fujii, Y. 1981. Composition independence of the possible finite-range gravitational force. General Relativity and Gravitation 13:1147-1155.

    ADS  MathSciNet  Article  Google Scholar 

  74. 74.

    Fujii, Y. and Nishino H. 1979. Some phenomenological consequences of the super Higgs effect. Zeitschriji für Physik C, Particles and Fields 2: 247-252.

    ADS  MathSciNet  Article  Google Scholar 

  75. 75.

    Galbraith, W., G. Manning, A.E. Taylor, B.D. Jones, J. Malos, A. Astbury, N.H. Lipman and T.G. Walker. 1965. Two-Pion Decay of the K 02 Meson. Physical Review Letters 14: 383-386.

    ADS  Article  Google Scholar 

  76. 76.

    Gibbons, G.W. and B.F. Whiting. 1981. Newtonian gravity measurements impose constraints on unification theories. Nature 291: 636-638.

    ADS  Article  Google Scholar 

  77. 77.

    Grossman, N. et al. 1987. Measurement of the lifetime of K 0 S mesons in the momentum range 100 to 350 GeV/c. Physical Review Letters 59: 18-21.

    ADS  Article  Google Scholar 

  78. 78.

    Hall, A.M., H. Armbruster, E. Fischbach and C. Talmadge. 1991. Is the Eötvös experiment sensitive to spin? In: Progress in High Energy Physics, Proceedings of the Second International Conference and Spring School on Medium and High Energy Nuclear Physics, W.-Y.P. Hwang et al. (Eds.), North Holland, New York, pp. 325-339.

  79. 79.

    Heard, H. 1980. The Amazing Mycroft Mysteries, Vanguard Press, New York, pp. 196-197.

  80. 80.

    Hipkin R.G. and B. Steinberger B. 1990. Testing Newton’s law in the Megget water reservoir. In: Gravity, Gradiometry, and Gravimetry, Symposium No. 103, R. Rummel and R.G. Hipkin (Eds.), Springer-Verlag, New York, 31-39.

  81. 81.

    Holding, S.C. and G.J. Tuck. 1984. A new mine determination of the Newtonian gravitational constant. Nature 307: 714-716.

    ADS  Article  Google Scholar 

  82. 82.

    Hólmansson, S., C. Sanders and J. Tucker. 1989. Concise Icelandic-English Dictionary, Idunn, Reykjavík, p. 294.

  83. 83.

    Hoskins, J.K., R.D. Newman, R. Spero and J. Schultz. 1985. Experimental tests of the gravitational inverse-square law for mass separations from 2 to 105 cm. Physical Review D 32: 3084-3095.

    ADS  Article  Google Scholar 

  84. 84.

    Hughes, R. and P. Bianconi. 1967. The Complete Paintings of Bruegel, Harry N. Abrams, New York.

  85. 85.

    Jekeli C., D.H. Eckhardt and A.J. Romaides. 1990. Tower gravity experiment: No evidence for non-Newtonian gravity. Physical Review Letters 64: 1204-1206.

    ADS  Article  Google Scholar 

  86. 86.

    Kammeraad J. et al. 1990. New results from Nevada: A test of Newton’s law using the BREN tower and a high density ground gravity survey. In: New and Exotic Phenomena Õ90, Proceedings of the XXVth Rencontre de Moriond, O. Fackler and J. Trân Thanh Vân (Eds.), Editions Frontiéres, Gif-sur-Yvette, pp. 245-254.

  87. 87.

    Kehagias, A. and K. Sfetsos. 2000. Deviations from the 1 /r2 Newton law due to extra dimensions. Physics Letters B 472: 39-44.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  88. 88.

    Kloor, H., E. Fischbach, C. Talmadge and G.L. Greene. 1994. Limits on new forces co-existing with electromagnetism. Physical Review D 49: 2098-2114.

    ADS  Article  Google Scholar 

  89. 89.

    Krause, W. 1988. A Letter from Eötvös. Zeitschrift für Naturforschung 43a: 509-510.

    ADS  Google Scholar 

  90. 90.

    Krauss, L.M. 2008. A fifth farce. Physics Today 61 (10): 53-55.

    Article  Google Scholar 

  91. 91.

    Krause, D.E. and E. Fischbach. 2002. Isotopic Dependence of the Casimir Force. Physical Review Letters 89: 190406.

    ADS  Article  Google Scholar 

  92. 92.

    Krause, D.E., H.T. Kloor and E. Fischbach. 1994. Multipole radiation from massive fields: Application to binary pulsar systems. Physical Review D 49: 6892-6906.

    ADS  Article  Google Scholar 

  93. 93.

    Kreuzer, L.B. 1968. Experimental measurement of the equivalence of active and passive gravitational mass. Physical Review 169:1007-1012.

    ADS  Article  Google Scholar 

  94. 94.

    Kuroda K. and N. Mio. 1989. Galilean test of the composi- tion-dependent force. In: Proceedings for the Fifth Marcel Grossmann Meeting on General Relativity, D.G. Blair and M.J. Buckingham (Eds.), World Scientific, Singapore, pp. 1569-1572.

  95. 95.

    Lee, T.D. and C.N. Yang. 1955. Conservation of heavy particles and generalized gauge transformations. Physical Review 98: 1501.

    ADS  Article  Google Scholar 

  96. 96.

    Lee, T.D. and C.S. Wu. 1966. Weak Interactions (Second Section) Chapter 9: Decays of Neutral K Mesons. Annual Review of Nuclear Science 16: 511-590.

    ADS  Article  Google Scholar 

  97. 97.

    Long, D.R. 1976. Experimental examination of the gravitational inverse square law. Nature 260: 417-418.

    ADS  Article  Google Scholar 

  98. 98.

    Long, D.R. 1980. Vacuum polarization and non- Newtonian gravitation. Il Nuovo Cimento 55B: 252-256.

    ADS  Article  Google Scholar 

  99. 99.

    Lusignoli, M. and A. Pugliese. 1986. Hyperphotons and K-meson decays. Physics Letters B 171: 468-470.

    ADS  Article  Google Scholar 

  100. 100.

    Maddox, J. 1986a. Newtonian gravitation corrected. Nature 319: 173.

    ADS  Article  Google Scholar 

  101. 101.

    Maddox, J. 1986. Looking for gravitational errors. Nature 322: 109.

    ADS  Article  Google Scholar 

  102. 102.

    Maddox, J. 1987. Prospects for fifth force fade. Nature 329: 283.

    ADS  Article  Google Scholar 

  103. 103.

    Maddox, J. 1988a. Making the geoid respectable again. Nature 332: 301.

    ADS  Article  Google Scholar 

  104. 104.

    Maddox, J. 1988b. Reticence and the upper limit. Nature 333: 295.

    ADS  Article  Google Scholar 

  105. 105.

    Maddox, J. 1988c. The stimulation of the fifth force. Nature 335: 393.

    ADS  Article  Google Scholar 

  106. 106.

    Maddox, J. 1991. Weak equivalence in the balance. Nature 350: 187.

    ADS  Article  Google Scholar 

  107. 107.

    Mattingly, D. 2005. Modern Tests of Lorentz Invariance. Living Reviews in Relativity 8: 5.

    ADS  Article  Google Scholar 

  108. 108.

    Milgrom, M. 1986. On the use of Eötvös-type experiments to detect medium-range forces. Nuclear Physics B277: 509-512.

    ADS  Article  Google Scholar 

  109. 109.

    Moody, M.V. and H.J. Paik. 1993. Gauss’s law test of gravity at short range. Physical Review Letters 70: 1195-1198.

    ADS  Article  Google Scholar 

  110. 110.

    Nelson P.G., D.M. Graham and R.D. Newman. 1988. A ‘fifth force’ search using a controlled local mass. In: 5th Force-Neutrino Physics, Proceedings of the XXIIIrd Rencontre de Moriond (VIIIth Moriond Workshop), O. Fackler and J. Trân Thanh Vân (Eds.), Editions Frontiéres, Gif-sur-Yvette, pp. 471-480.

  111. 111.

    Neufeld D.A. 1986. Upper limit on any intermediate-range force associated with baryon number. Physical Review Letters 56: 2344-2346.

    ADS  Article  Google Scholar 

  112. 112.

    Niebauer T.M., M.P. McHugh and J.E. Faller. 1987. Galilean test for the fifth force. Physical Review Letters 59: 609-612.

    ADS  Article  Google Scholar 

  113. 113.

    Olive, K.A. et al. (Particle Data Group). 2014. Review of Particle Physics. Chinese Physics C 38 (9): 1-1676.

    MathSciNet  Article  Google Scholar 

  114. 114.

    Particle Data Group. 1998. Review of Particle Physics. European Physical Journal C 3: 1-794.

    ADS  Article  Google Scholar 

  115. 115.

    Randall, L. and R. Sundrum. 1999. Large Mass Hierarchy from a Small Extra Dimension. Physical Review Letters 83: 3370-3373.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  116. 116.

    Renner J. 1935. Kísérleti vizsgálatok a tömegvonzás és a tehetetlenség arányosságáról. Matematikai és Természettudományi Értesitö 53: 542-568.

    Google Scholar 

  117. 117.

    Roll, P.G., R.V. Krotkov and R.H. Dicke. 1964. The equivalence of inertial and passive gravitational mass. Annals of Physics (New York) 26: 442-517.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  118. 118.

    Romaides, A.J. et al. 1994. Second tower experiment: Further evidence for Newtonian gravity. Physical Review D 50: 3613-3617.

    ADS  Article  Google Scholar 

  119. 119.

    Romaides, A.J., R.W. Sands, E. Fischbach and C. Talmadge. 1997. Final results from the WABG tower gravity experiment. Physical Review D 55: 4532-4536.

    ADS  Article  Google Scholar 

  120. 120.

    Schwarzschild, B. 1986. Reanalysis of old Eötvös data suggests 5th some. Physics Today 39 (12): 17-20.

    ADS  Article  Google Scholar 

  121. 121.

    Simpson, W.M. R. and U. Leonhardt (eds.). 2015. Forces of the Quantum Vacuum: An Introduction to Casimir Physics, World Scientific, Singapore.

  122. 122.

    Speake, C.C. et al. 1990. Test of the inverse-square law of gravitation using the 300 m tower at Erie, Colorado. Physical Review Letters 65: 1967-1971.

    ADS  Article  Google Scholar 

  123. 123.

    Spero, R. et al. 1980. Test of the gravitational inverse-square law at laboratory distances. Physical Review Letters 44: 1645-1648.

    ADS  Article  Google Scholar 

  124. 124.

    Stacey, F.D. 1978. Possibility of a geophysical determination of the Newtonian gravitational constant. Geophysical Research Letters 5: 377-378.

    ADS  Article  Google Scholar 

  125. 125.

    Stacey, F.D., G.J. Tuck, S.C. Holding, A.R. Maher and D. Moms. 1981a. Constraint on the planetary scale value of the Newtonian gravitational constant from the gravity profile within a mine. Physical Review D 23: 1683-1692.

    ADS  Article  Google Scholar 

  126. 126.

    Stacey, F.D. and G.J. Tuck. 1981b. Geophysical evidence for non-Newtonian gravity. Nature 292: 230-232.

    ADS  Article  Google Scholar 

  127. 127.

    Stacey F.D. 1983. Subterranean gravity and other deep hole geophysics. In: Science Underground, AIP Conference Proceedings, No. 96, M.M. Nieto et al. (Eds.), American Institute of Physics, New York, pp. 285-297.

  128. 128.

    Stacey, F.D. and G.J. Tuck. 1984a. Non-Newtonian gravity: Geophysical evidence, In: Precision Measurement and Fundamental Constants II, B.N. Taylor and W.D. Phillips (Eds.), National Bureau of Standards Special Publication 617, National Bureau of Standards (U.S.), pp. 597-600.

  129. 129.

    Stacey, F.D. 1984b. Gravity. Science Progress 69 (273): 1-17.

    Google Scholar 

  130. 130.

    Stacey, F.D., G.J. Tuck, S.C. Holding, G.I. Moore, B.D. Goodwin and Z. Ran. 1986. Large scale tests of the inverse square law. In: Abstracts of Contributed Papers, 11th International Conference on General Relativity and Gravitation, edited by M. MacCallum et al., International Society on General Relativity and Gravitation, p. 627.

  131. 131.

    Stacey F.D., G.J. Tuck, G.I. Moore. 1987a. Geophysical tests of the inverse square law of gravity. In: New and Exotic Phenomena, Proceedings of the XXIInd Rencontre de Moriond, O. Fackler and J. Trân Thanh Vân (Eds.), Editions Frontiéres, Gif-sur-Yvette, pp. 557-565.

  132. 132.

    Stacey, F.D., G.J. Tuck, G.I. Moore, S.C. Holding, B.D. Goodwin and R. Zhou. 1987b. Geophysics and the law of gravity. Reviews of Modern Physics 59: 157-174.

    ADS  Article  Google Scholar 

  133. 133.

    Stacey, F.D., G.J. Tuck and G.I. Moore. 1987c. Quantum gravity: Observational constraints on a pair of Yukawa terms. Physical Review D 36: 2374-2380.

    ADS  Article  Google Scholar 

  134. 134.

    Stacey F.D., G.J. Tuck and G.I. Moore. 1988a. Geophysical considerations in the fifth force controversy. Journal of Geophysical Research 93: 575-587.

    Article  Google Scholar 

  135. 135.

    Stacey F.D. and G.J. Tuck. 1988b. Is gravity as simple as we thought? Physics World 1 (3): 29-32.

    Article  Google Scholar 

  136. 136.

    Stacey F.D. 1990. Gravity–a possible refinement of Newton’s law. In: Frontiers of Science, A. Scott (Ed.), Blackwell, Oxford, pp. 157-170.

  137. 137.

    Suzuki, M. 1986. Bound on the mass and coupling of the hyperphoton by particle physics. Physical Review Letters 56: 1339-1341.

    ADS  Article  Google Scholar 

  138. 138.

    Szabó, Z. (Ed.) 1998. Three Fundamental Papers of Loränd Eötvös. Eötvös Loránd Geophysical Institute of Hungary, Budapest.

  139. 139.

    Talmadge, C., S.H. Aronson and E. Fischbach. 1986. Effects of Local Mass Anomalies in Eötvös-type Experiments. In: Progress in Electroweak Interactions, J. Trân Thanh Vân (Ed.), Editions Frontiéres, Gif Sur Yvette, France, Vol. 1, pp. 229-240.

  140. 140.

    Talmadge C., J.-P. Berthias, R.W. Hellings and E.M. Standish. 1988. Model-independent constraints on possible modifications of Newtonian gravity. Physical Review Letters 61: 159-1162.

    Article  Google Scholar 

  141. 141.

    Thieberger, P. 1986. Hypercharge fields and Eötvös-type experiments. Physical Review Letters 56: 2347-2349.

    ADS  Article  Google Scholar 

  142. 142.

    Thieberger, P. 1987. Search for a substance-dependent force with a new differential accelerometer. Physical Review Letters 58: 1066-1069.

    ADS  Article  Google Scholar 

  143. 143.

    Thodberg, H.H. 1986. Comment on the sign in the reanalysis of the Eötvös experiment. Physical Review Letters 56: 2423.

    ADS  Article  Google Scholar 

  144. 144.

    Thomas, J. et al. 1989. Testing the inverse-square law of gravity on a 465 m tower. Physical Review Letters 63: 1902-1905.

    ADS  Article  Google Scholar 

  145. 145.

    Touboul, P. and M. Rodrigues. 2001. The MICROSCOPE space mission. Classical and Quantum Gravity 18: 2487-2498.

    ADS  MATH  Article  Google Scholar 

  146. 146.

    Weinberg, S. 1964. Do hyperphotons exist? Physical Review Letters 13: 495-497.

    ADS  Article  Google Scholar 

  147. 147.

    Will, C.M. 1993. Theory and Experiment in Gravitational Physics (Rev. Ed.) Cambridge University Press, New York.

Download references

Author information



Corresponding author

Correspondence to Ephraim Fischbach.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fischbach, E. The fifth force: A personal history. EPJ H 40, 385–467 (2015).

Download citation


  • Personal History
  • Baryon Number
  • Physical Review Letter
  • Casimir Force
  • Newtonian Gravity