The European Physical Journal H

, Volume 40, Issue 3, pp 279–299 | Cite as

Nuclear physics in Heidelberg in the years 1950 to 1980. Personal recollections

  • Hans A. WeidenmüllerEmail author
Personal recollection


After World War II, nuclear physics was a central research theme in the Faculty of Physics and Astronomy at Heidelberg University. That tendency was amplified by the founding of the Max-Planck-Institut für Kernphysik in Heidelberg in 1958. The author witnessed these developments as a student and, later, as a member of the Heidelberg Faculty and of the Max-Planck-Institut.


Nuclear Reaction Shell Model Random Matrice Compound Nucleus Full Professor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agassi, D. , H.A. Weidenmüller, and G. Mantzouranis. 1975. The Statistical Theory of Nuclear Reactions for Strongly Overlapping Resonances as a Theory of Transport Phenomena. Phys. Rep. 22: 145–179 CrossRefADSGoogle Scholar
  2. Arima, A. and F. Iachello. 1975. Collective Nuclear States as Representations of a SU(6). Phys. Rev. Lett. 35: 1069–1072 CrossRefADSGoogle Scholar
  3. Blatt, J.M. and V. Weisskopf. 1952. Theoretical Nuclear Physics, 1st edn., John Wiley, New York Google Scholar
  4. Bohigas, O. , M.-J. Giannoni, and C. Schmit. 1984. Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws. Phys. Rev. Lett. 52: 1–4 zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. Bohr, N. 1936. Neutron Capture and Nuclear Constitution. Nature 137: 344–348 zbMATHCrossRefADSGoogle Scholar
  6. Bohr, A. and B.R. Mottelson. 1953. Collective and Individual-particle Aspects of Nuclear Structure. K. Dan. Videns. Selsk. Mat-Fys. Medd. 27: 1–174.Google Scholar
  7. Bohr, A. and B.R. Mottelson. 1969. Nuclear Structure. Vol. 1. Single-Particle Motion, Benjamin, New York Google Scholar
  8. Bohr, A. and B.R. Mottelson. 1975. Nuclear Structure. Vol. 2. Nuclear Deformations, Benjamin, New York Google Scholar
  9. Brandow, B.H. 1967. Linked-Cluster Expansions for the Nuclear Many-Body Problem. Rev. Mod. Phys. 39: 771–828 CrossRefADSGoogle Scholar
  10. Brink, D.M. and R.O. Stephen. 1963. Widths of Fluctuations in Nuclear Cross Sections. Phys. Lett. 5: 77–79 CrossRefADSGoogle Scholar
  11. Brueckner, K.A. 1955. Many-Body Problem for Strongly Interacting Particles. II. Linked Cluster Expansion. Phys. Rev. 100: 36–45 zbMATHCrossRefADSGoogle Scholar
  12. Engelbrecht, C. and H.A. Weidenmüller. 1973. Hauser-Feshbach Theory and Ericson Fluctuations in the Presence of Direct Reactions. Phys. Rev. C 8: 859–862 CrossRefADSGoogle Scholar
  13. Ericson, T. 1960. Fluctuations of Nuclear Cross Sections in the “Continuum” Region. Phys. Rev. Lett. 5: 430–434 CrossRefADSGoogle Scholar
  14. Ericson, T. 1963. A Theory of Fluctuations in Nuclear Cross Sections. Ann. Phys. 23: 390–414 CrossRefADSGoogle Scholar
  15. Fermi, E. 1950. Nuclear Physics. Notes of a course given by E. Fermi at the University of Chicago, January–June 1949, compiled by J. Orear, A.H. Rosenfeld and R.A. Schluter, revised edition, The University of Chicago Press, ChicagoGoogle Scholar
  16. Fermi, E. and E. Amaldi. 1936. On the Absorption and the Diffusion of Slow Neutrons. Phys. Rev 50: 899–928 CrossRefADSGoogle Scholar
  17. Fermi, E. et al. 1934. Artificial Radioactivity produced by Neutron Bombardment. Proc. Roy. Soc. A 146: 483–500 CrossRefADSGoogle Scholar
  18. Fermi, E. et al. 1935. Artificial Radioactivity produced by Neutron Bombardment II. Proc. Roy. Soc. A 149: 522–558 CrossRefADSGoogle Scholar
  19. Feshbach, H. 1958. A Unified Theory of Nuclear Reactions I. Ann. Phys. 5: 357–390 zbMATHMathSciNetCrossRefADSGoogle Scholar
  20. Feshbach, H. 1962. A Unified Theory of nuclear Reactions. II. Ann. Phys. 19: 287–313 zbMATHMathSciNetCrossRefADSGoogle Scholar
  21. Feynman, R.P. and M. Gell-Mann. 1958. Theory of the Fermi Interaction. Phys. Rev. 109: 193–198 zbMATHMathSciNetCrossRefADSGoogle Scholar
  22. Goeppert-Mayer, M. 1949. On Closed Shells in Nuclei. Phys. Rev. 75: 1969–1970 CrossRefADSGoogle Scholar
  23. Hahn, O. and F. Strassmann. 1939. Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle. Naturwissenschaften 27: 11–15 zbMATHCrossRefADSGoogle Scholar
  24. Haxel, O. , J.H.D. Jensen, and H.E. Suess 1949. On the “Magic Numbers” in Nuclear Structure. Phys. Rev. 75: 1766–1766 CrossRefADSGoogle Scholar
  25. Hoffmann, D. 2015. Versöhnende Wissenschaft: 50 Jahre deutsch-israelische Beziehungen. Spectrum der Wissenschaft 4: 56–65 Google Scholar
  26. Hofmann, H.M. , J. Richert, W. Tepel, and H.A. Weidenmüller. 1975. Direct Reactions and Hauser-Feshbach Theory. Ann. Phys. 90: 403–437 CrossRefADSGoogle Scholar
  27. Humblet, J. and L. Rosenfeld. 1961. Theory of Nuclear Reactions: I. Resonant States and Collision Matrix. Nucl. Phys. 26: 529–578 zbMATHCrossRefGoogle Scholar
  28. Jensen, J.H.D. and M. Goeppert-Mayer. 1955. Elementary Theory of Nuclear Shell Structure, Wiley, New York Google Scholar
  29. Kapur, P.L. and R. Peierls. 1938. The Dispersion Formula for Nuclear Reactions. Proc. Roy. Soc. A 166: 277–295 CrossRefADSGoogle Scholar
  30. Kawai, M., A.K. Kerman, and K.W. McVoy. 1973. Modification of Hauser-Feshbach Calculations by Direct-reaction Channel Coupling. Ann. Phys. 75: 156–170 CrossRefADSGoogle Scholar
  31. Kurath, D. 1960. Gamma Width in Be8 Pertinent to a Test of the Conserved Vector Current Theory. Phys. Rev. Lett. 4: 180–180 CrossRefADSGoogle Scholar
  32. Mahaux, C. and H.A. Weidenmüller. 1969. Shell-model Approach to Nuclear Reactions, North-Holland Pub. Co., AmsterdamGoogle Scholar
  33. Meitner, L. and R.O. Frisch. 1939. Disintegration of Uranium by Neutrons: a New Type of Nuclear Reaction. Nature 143: 239–240 zbMATHCrossRefADSGoogle Scholar
  34. Moldauer, P.A. 1980. Statistics and the Average Cross Section. Nucl. Phys. A 344: 185–195, and references thereinCrossRefADSGoogle Scholar
  35. Mössbauer, R.L. 1958. Kernresonanzfluoreszenz von Gammastrahlung in Ir191. Z. Phys. A 151: 124–143 CrossRefGoogle Scholar
  36. Nordberg, M.E. , F.B. Morinigo, and C.A. Barnes. 1960. Comparison of the βα Angular Correlations in Li8 and B8. Phys. Rev. Lett. 104: 321–323 CrossRefADSGoogle Scholar
  37. Nordberg, M.E. , F.B. Morinigo, and C.A. Barnes. 1962. Comparison of the βα Angular Correlations in Li8 and B8 Beta Decays, and the Conserved Vector Current Theory. Phys. Rev. 123: 321–330 CrossRefADSGoogle Scholar
  38. Porter, C.E. and R.G. Thomas. 1956. Fluctuations of Nuclear Reaction Widths. Phys. Rev. 5: 483–491 CrossRefADSGoogle Scholar
  39. Rajaraman, R. and H.A. Bethe. 1967. Three-body Problem in Nuclear Matter. Rev. Mod. Phys. 39: 745–770 CrossRefADSGoogle Scholar
  40. Rosenzweig, N. and C.E. Porter. 1960. “Repulsion of Energy Levels” in Complex Atomic Spectra. Phys. Rev. 120: 1698–1714 CrossRefADSGoogle Scholar
  41. Schucan, T.H. and H.A. Weidenmüller. 1972. The Effective Interaction in Nuclei and its Perturbation Expansion: An Algebraic Approach. Ann. Phys. 73: 108–135 CrossRefADSGoogle Scholar
  42. Schucan, T.H. and H.A. Weidenmüller. 1973. Perturbation Theory for the Effective Interaction in Nuclei. Ann. Phys. 76: 483–509.CrossRefADSGoogle Scholar
  43. Verbaarschot, J.M.M. , H.A. Weidenmüller, and M.R. Zirnbauer. 1985. Grassmann Integration in Stochastic Quantum Physics: The Case of Compound-nucleus Scattering. Phys. Rep. 129: 367–438 MathSciNetCrossRefADSGoogle Scholar
  44. Weidenmüller, H.-A. 1958. Nukleonenpolarisation bei Strippingreaktionen. Z. Phys. 150: 389–406 zbMATHCrossRefADSGoogle Scholar
  45. Weidenmüller, H.-A. 1960. Possibility of a Test of the Conserved Vector Current Theory in the A = 8 Polyad. Phys. Rev. Lett. 4: 299–302 CrossRefADSGoogle Scholar
  46. Wigner, E. 1955. Characteristic Vectors of Bordered Matrices with Infinite Dimensions. Ann. Math. 62: 548–564 zbMATHMathSciNetCrossRefGoogle Scholar
  47. Wigner, E.P. and L. Eisenbud. 1947. Higher Angular Momenta and Long Range Interaction in Resonance Reactions. Phys. Rev. 72: 29–41 CrossRefADSGoogle Scholar
  48. Zelevinsky, V. , B.A. Brown, N. Frazier, and M. Horoi. 1996. The Nuclear Shell Model as a Testing Ground for Many-body Quantum Chaos. Phys. Rep. 276: 85–176 MathSciNetCrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations