Skip to main content

Hacking the quantum revolution: 1925–1975


I argue that the quantum revolution should be seen as an Ian Hacking type of scientific revolution: a profound, longue durée, multidisciplinary process of transforming our understanding of physical nature, with deep-rooted social components from the start. The “revolution” exhibits a characteristic style of reasoning – the hierarchization of physical nature — and developed and uses a specific language – quantum field theory (QFT). It is by virtue of that language that the quantum theory has achieved some of its deepest insights into the description of the dynamics of the physical world. However, the meaning of what a quantum field theory is and what it describes has deeply altered, and one now speaks of “effective” quantum field theories. Interpreting all present day quantum field theories as but “effective” field theories sheds additional light on Phillip Anderson’s assertion that “More is different”. This important element is addressed in the last part of the paper.

This is a preview of subscription content, access via your institution.


  • Abrikosov, A.A., I.E. Dzyaloshinskii and L.P. Gorkov. 1961, 1963. Methods of Quantum Field Theory in Statistical Physics (Moscow: Fizmatgiz, 1961; English translation, Prentice Hall, New York, 1963).

  • Adler, S. 2004. Anomalies. arXiv:hep-th/0411038v3.

  • Akhiezer, A.I. and V.B. Berestetsky. 1953. Quantum electrodynamics. Oak Ridge, U.S. Atomic Energy Commission, Tenn.

  • Altland, A. and B. Simons. 2010. Condensed Matter Field Theory. 2nd edn. Cambridge University Press, Cambridge.

  • Ambegaokar, V. and L.P. Kadanoff. 1961. Theory of Many-Particle Systems II: Superconductivity. Nuovo Cimento 22: 914.

    MATH  Google Scholar 

  • Anderson, P.W. 1963. Plasmons, gauge invariance, and mass. Physical Review 130: 439.

    ADS  MATH  Google Scholar 

  • Anderson, P.W. 1972. More is Different. Science 177: 393–396.

    ADS  Google Scholar 

  • Applequist, T. and J. Carazzone. 1975. Infrared sigularities and massive fields. Physical Review D11: 2856–61.

    ADS  Google Scholar 

  • Ash, M.G. and A. Söllner, eds. 1996. Forced Migration and Scientific Change: Emigré German-Speaking Scientists and Scholars after 1933. Washington, D.C.: German Historical Institute and Cambridge University Press, New York:.

  • Aspray, W. and P. Kitcher, eds. 1998. History and philosophy of modern mathematics. University of Minnesota Press, Minneapolis.

  • Atiyah, M. 2002. The unreasonable effectiveness of physics in mathematics. In Fokas et al. (2002), pp. 25–38.

  • Balian, R. and J. Zinn-Justin, eds. 1975. Les Houches Summer School in Theoretical Physics. Methods in Field Theory. North Holland Publishing Co, Amsterdam.

  • Banks, T. 2008. Modern quantum field theory: an introduction. Cambridge, Cambridge University Press, New York.

  • Bardeen, J., L.N. Cooper and J.R. Schrieffer. 1957. Theory of Superconductivity. Physical Review 108: 175–1204.

    ADS  MathSciNet  Google Scholar 

  • Batterman, R. ed. 2011. The Oxford Handbook of the Philosophy of Physics. Oxford University Press, Oxford.

  • Batterman, R. 2012. Intertheory Relations in Physics. Stanford Encyclopedia of Philosophy.

  • Belfer, R. and S.S. Schweber. 2015. Hacking scientific revolutions. Submitted for publication.

  • Bell, J.S. and R. Jackiw. 1969. A PCAC puzzle: π0 → γγ in the σ-model. Il Nuovo Cimento A 60: 47–61.

    ADS  Google Scholar 

  • Berger, M. 2000. Encounter with a Geometer. I and II. Notices of the American Mathematical Society 47: 183–194 and 47: 326–340.

    MATH  MathSciNet  Google Scholar 

  • Bernstein, J. and G. Feinberg (Eds). 1986. Cosmological Constants. Papers in Modern Cosmology (New York: Columbia University Press).

  • Bethe, H.A. 1955. Memorial Symposium Held in Honor of Enrico Fermi at the Washington Meeting of the American Physical Society, April 29, 1955. Reviews of Modern Physics 27: 253.

    ADS  Google Scholar 

  • Bethe, H.A. 1986. Basic Bethe: seminal articles on nuclear physics, 1936–1937 by Hans A. Bethe, Robert F. Bacher, M. Stanley Livingston. Preface by Hans A. Bethe; introduction by Roger H. Stuewer. Tomash Publishers, Los Angeles; American Institute of Physics, New York.

  • Bethe, H.A. 1993. My Experience in Teaching Physics. American Journal Of Physics 61: 972–3.

    ADS  Google Scholar 

  • Bethe, H.A. and J. Ashkin. 1953. The Passage of Radiation through Matter. In Segrè, (1953–1959), Volume I, 166–357.

  • Bethe, H.A. and H. Bethe. 2002. Enrico Fermi in Rome, 1931–32. Physics Today 55: 28.

    ADS  Google Scholar 

  • Bjorken, J. 1997. Deep-Inelastic Scattering: From Current Algebra to Partons. In Hoddeson et al. (1997), pp. 589–599.

  • Bloor, D. 2011. The enigma of the aerofoil: rival theories in aerodynamics, 1909–1930. University of Chicago Press, Chicago.

  • Bogoliubov, N.N. 1947. On the theory of superfluidity. Journal of Physics USSR 11: 23–32.

    Google Scholar 

  • Bogoliubov, N.N. 1958. A new method in the theory of superconductivity. Soviet Physics JETP 7: 41–46.

    MathSciNet  Google Scholar 

  • Bogoliubov, N.N. and D.V. Shirkov. 1959. The Theory of Quantized Fields. Interscience, New York.

  • Born, M., W. Heisenberg and P. Jordan. 1926. Zur Quantenmechanik II. Zeitschrift für Physik 35: 557–615.

    ADS  MATH  Google Scholar 

  • Boyle, P.A. et al. 2003. The QCDOC supercomputer: hardware, software, and performance. arXiv:hep-lat/0306023.

  • Brey J. and R.B. Jones, eds. 1976. Critical Phenomena. Sitges International Summer school on Statistical Mechanics. Lecture notes in Physics 54. Berlin. Springer Verlag.

  • Brezin, E. 2014. Wilson’s renormalization group: a paradigmatic shift. To be published in Journal of Statistical Physics K.G. Wilson Memorial Issue. arXiv:1402.3437v1.

  • Brittin, W.E. ed. 1965. Lectures in Theoretical Physics. Volume VII C. Statistical Physics, Weak Interactions, Field Theory. Delivered at the Summer Institute for Theoretical Physics, University of Colorado 1964. University of Colorado Press, Boulder.

  • Brout, R. 1997. Notes on spontaneously broken symmetry. In Hoddeson et al. (1997), 485–500.

  • Brown, L.M., M. Dresden and L. Hoddeson, eds. 1989. Pions to quarks: particle physics in the 1950s: based on a Fermilab symposium. Cambridge [Eng.]; Cambridge University Press, New York.

  • Brown, L.M. and H. Rechenberg. 1991. Quantum field theories, nuclear forces, and the cosmic rays (1934–1938). American Journal of Physics 59: 595.

    ADS  Google Scholar 

  • Brown, L.M. and H. Rechenberg. 1994. Field Theories of Nuclear Forces in the 1930s: The Fermi-Field Theory. Historical Studies in the Physical and Biological Sciences 25: 1-24.

    Google Scholar 

  • Brown, L.M. and H. Rechenberg. 1996. The Origin of the Concept of Nuclear Forces. Philadelphia, Institute of Physics Publications, PA.

  • Brown, L.M., M. Dresden and L. Hoddeson. 1989. Pions to Quarks: Particle Physics in the 1950s. Cambridge University Press, Cambridge UK.

  • Brown, L.M., A. Pais and Sir Brian Pippard, 1995. Twentieth century physics. Philadelphia, Institute of Physics Pub, PA. 3 volumes.

  • Brown, L.M., M. Riordan, M. Dresden and L. Hoddeson. 1997. The Rise of the Standard Model. In Hoddeson et al. (1997), pp. 3–35.

  • Brueckner, K.A., C.A. Levinson and H.M. Mahmoud. 1954. Two-Body Forces and Nuclear Saturation. I. Central Forces. Physical Review 95: 217–227.

    ADS  MATH  Google Scholar 

  • Brueckner, K.A. 1954. Nuclear Saturation and Two-Body Forces. II. Tensor Forces. Physical Review 96: 508–515; Physical Review 97: 1355–65.

    ADS  MATH  Google Scholar 

  • Brueckner, K.A. and C.A. Levinson. 1955. Approximate Reduction of the Many-Body Problem for Strongly Interacting Particles to a Problem of Self-Consistent Fields. Physical Review 97: 1344–56.

    ADS  MATH  Google Scholar 

  • Butterfield, J. 2011. Less is Different: Emergence and Reduction Reconciled, Foundations of Physics 41: 1065–1135.

    ADS  MATH  MathSciNet  Google Scholar 

  • Butterfield, J. and N. Bouatta. 2011. Emergence and Reduction Combined in Phase Transitions. arXiv:1104.1371v2.

  • Büttner, J., J. Renn and M. Schemmel. 2003. Exploring the limits of classical physics: Planck, Einstein, and the structure of a scientific revolution. Studies in History and Philosophy of Modern Physics 34: 37–59.

    MATH  Google Scholar 

  • Callan, C.G. and D. Gross. 1968. Crucial Test of a theory of currents. Physical Review Letters 21: 311–313.

    ADS  Google Scholar 

  • Callan, C.G. 1970. Bjorken scale invariance in scalar field theory. Physical Review D2: 1541–1547.

    ADS  Google Scholar 

  • Callan, C.G. 1972. Bjorken scale invariance and asymptotic behavior. Physical Review D5: 3202–3210.

    ADS  Google Scholar 

  • Callan, C.G. and D. Gross. 1973. Bjorken scaling in quantum field theory. Physical Review D8: 4383–4394.

    ADS  Google Scholar 

  • Callen, H.B. 1960. Thermodynamics; an introduction to the physical theories of equilibrium thermostatics and irreversible thermodynamics. Wiley, New York.

  • Cao, T.Y. 1997. Conceptual Developments of Twentieth Century Field Theories. Cambridge University Press, Cambridge.

  • Cao, T.Y. ed. 1999. Conceptual foundations of quantum field theory. Cambridge University Press, New York.

  • Cao, T.Y. 2010. From current algebra to quantum chromodynamics: a case for structural realism. Cambridge; Cambridge University Press, New York.

  • Cao, T.Y. and S.S. Schweber. 1993. The Conceptual Foundations and Philosophical Aspects of Renormalization. Synthèse 97: 33–108.

    MathSciNet  Google Scholar 

  • Carrier, M. and A. Nordmann, eds. 2011. Science in the Context of Application. Boston Studies in the Philosophy of Science. Vol. 274. Springer, Dordrecht.

  • Carson, C. 1996a. The peculiar notion of exchange forces – I: Origins in quantum mechanics, 1926–1928. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics 27: 23–45.

    MATH  MathSciNet  Google Scholar 

  • Carson, C. 1996b. The peculiar notion of exchange forces – II: From nuclear forces to QED, 1929–1950. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics 27: 99–131.

    MATH  MathSciNet  Google Scholar 

  • Cartan, E. 1928. Leçons sur la géométrie des espaces de Riemann. Paris, Gauthier-Villars.

  • Casimir, H.B.G. 1992. Léon Charles Prudent van Hove (10 February 1924–2 September 1991). Proceedings of the American Philosophical Society 136: 603–606.

    Google Scholar 

  • Castellani, E. 2002. Reductionism, emergence, and effective field theories. Studies in History and Philosophy of Modern Physics 33: 251–267.

    MATH  MathSciNet  Google Scholar 

  • Casti, J. and A. Karlqvist, eds. 1996. Boundaries and Barriers: on the limits of scientific knowledge. Reading, Addison-Wesley, MA.

  • Chang, H. 2010. Ask not what philosophy can do for chemistry, but what chemistry can do for philosophy. Metascience 19: 373–377.

    Google Scholar 

  • Chang, H. 2011. The Persistence of Epistemic Objects Through Scientific Change. Erkenntnis 75: 413–429.

    Google Scholar 

  • Chang, H. 2012. Is Water HO?: evidence, pluralism and realism. Springer-Verlag, Dordrecht [The Netherlands].

  • Cheng, T.P. and L.F. Li. 1984. Gauge theory of elementary particle physics. Clarendon Press, Oxford [Oxfordshire]; Oxford University Press, New York.

  • Chrétien, M., E.P. Gross and S. Deser. 1968. Statistical Physics, Phase Transitions and Superfluidity. Brazndeis Univerity Summer Institute in Theoretical Physics, 1966. 2 volumes. Gordon and Breach Science Publishers, New York.

  • Close, F. 2011. The Infinity Puzzle: Quantum Field Theory and the Hunt for an Orderly Universe. Oxford University Press, Oxford.

  • Cohen, I.B. 1987. Scientific revolutions, revolutions in science, and a probabilistic revolution 1800–1930. In Krüger et al. (1987).

  • Cohen, I.B. and G.E. Smith. 2002. The Cambridge Companion to Newton. Cambridge University Press, Cambridge.

  • Cooper, L. 1956. Bound Electron Pairs in a Degenerate Fermi Gas. Physical Review 104: 1189–1190.

    ADS  MATH  Google Scholar 

  • Cooper, L.N. and D. Feldman, (Eds.). 2011. BCS: 50 years. (Singapore: World scientific).

  • Courant, R. and D. Hilbert. 1924. Methoden der mathematischen Physik I. Springer, Berlin.

  • Crombie, A. 1995. Styles of Scientific Thinking in the European Tradition: The History of Argument and Explanation Especially in the Mathematical and Biomedical Sciences and Arts. 3v. Gerald Duckworth & Company, London.

  • Darrigol, O. 1993. From c-Numbers to q-Numbers. University of California Press, Berkeley.

  • Darrigol, O. 2005. Worlds of flow: a history of hydrodynamics from the Bernoullis to Prandtl. Oxford; Oxford University Press, New York.

  • Darwin, C.G. 1958. Douglas Rayner Hartree. 1897–1958. Biographical Memoirs of Fellows of Royal Society 116: 174.

    ADS  Google Scholar 

  • Delamotte, B. 2004. A hint of renormalization. American Journal of Physics 72: 170–177.

    ADS  Google Scholar 

  • Deligne P., P. Etingof, D. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, ...and E. Witten. 1999. Quantum fields and strings: a course for mathematicians. Vols. 1, 2. Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997. AMS, Providence, RI. Institute for Advanced Study (IAS), Princeton, NJ, Vol. 1.

  • DeWitt, B.S. 1967. Quantum theory of gravity. I. The canonical theory. Physical Review 160: 1113.

    ADS  MATH  Google Scholar 

  • DeWitt, C. and R. Stora, eds. 1971. Statistical Mechanics and Quantum Field Theory. Gordon and Breach, New York.

  • DeWitt, B. 1996. The Uses and Implications of Curved-Spacetime Propagatore: A Personal View. In Ng (1996), pp. 29–60.

  • Di Castro, C. and G. Jona-Lasinio. 1969. On the microscopic foundation of scaling laws. Physics Letters 29A: 322-3.

    ADS  Google Scholar 

  • Di Castro, C. and G. Jona-Lasinio. 1976. The renormalization group approach to critical phenomena. In Domb and Green 1976, Vol. 6, pp. 507–558.

  • Dirac, P.A.M. 1930. The Principles of Quantum Mechanics. The Clarendon Press, Oxford.

  • Dirac, P.A.M., V.A. Fock and B. Podolsky. 1932. On quantum electrodynamics. Physikalische Zeitschrift der Sowjetunion 2: 468–479.

    Google Scholar 

  • Dolan, L. and R. Jackiw. 1974. Symmetry behavior at finite temperature. Physical Review D 9: 3320–3341.

    ADS  Google Scholar 

  • Domb, C. 1990. Some reminiscences about my early career. Physica A 168: 1–21.

    ADS  MathSciNet  Google Scholar 

  • Domb, C. 1996. The Critical Point. A historical introduction to the modern theory of critical phenomena. Taylor & Francis, London, 1996.

  • Domb, C. and M.S. Green. 1976. Phase Transitions and Critical Phenomena. Vol. 6 (Academic Press, London, New York).

  • Drieschner, M. ed. 2014. Carl Friedrich von Weizsäcker: Major Texts in Physics. Springer International Publishing. Springer, Cham.

  • DuBridge, L.A. 1949. The Effects of World War II on the Science of Physics. American Journal of Physics 17: 273.

    ADS  Google Scholar 

  • Duncan, A. 2012. The conceptual framework of quantum field theory. Oxford University Press, Oxford, U.K.

  • Duncan, A. and M. Janssen. 2006. On the verge of Umdeutung in Minnesota: Van Vleck and the correspondence principle”. Part One. arXiv:physics/0610192.

  • Dyson, F.J. 1968. Stability of Matter. In Chrétien et al. (1968), pp. 181–239.

  • Dyson, F.J. and A. Lenard. (1967). Stability of Matter I and II. Journal of Mathematical Physics 8: 423–434 and 9: 698–711., 1968

    ADS  MATH  MathSciNet  Google Scholar 

  • Eckert, M. 2004. Arnold Sommerfeld. Springer–Verlag, Berlin.

  • Eckert, M. 2013. Arnold Sommerfeld: Science, Life and Turbulent Times 1868–1951. Springer, Berlin, 2013.

  • Eisenbud, L. and E.P. Wigner. 1958. Nuclear structure. Princeton University Press, Princeton.

  • Englert, F. and R. Brout. 1964. Broken Symmetry and the Mass of Gauge Vector Mesons. Physical Review Letters 13: 321–323.

    ADS  MathSciNet  Google Scholar 

  • Ericson, T.E.O. 1992. The birth of intermediate-energy physics (No. CERN-TH-6517-92). CM-P00057056.

  • Fadeev, L.D. and V.N. Popov. 1967. Feynman diagrams for the Yang-Mills field. Physics Letters B 25: 29–30.

    ADS  Google Scholar 

  • Fadeev, L.D. 1995. 40 years in mathematical physics. World Scientific, Singapore; River Edge, N.J.

  • Feigl, H. and G. Maxwell, eds. 1962. Minnesota Studies in the Philosophy of Science, Vol. 3, pp. 28–97. D. Reidel Publishing Company, Dordrecht, Holland.

  • Fermi, F. 1932. Quantum Theory of Radiation. Reviews of Modern Physics 4: 87–132.

    ADS  Google Scholar 

  • Fernandez, R., J. Fröhlich and A.D. Sokal. 1992. Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer-Verlag, Berlin.

  • Feyerabend, P.K. 1962. Explanation, reduction, and empiricism. In Feigl and Maxwell (1962). Vol. 3, pp. 28–97.

  • Feynman, R.P. and L.M. Brown. 2001. Selected papers of Richard Feynman. World Scientific Publishing Company, Singapore.

  • Fisher, M.E. 1964a. The free energy of a macroscopic system. Archive for Rational Mechanics and Analysis 17: 377–410.

    ADS  MathSciNet  Google Scholar 

  • Fisher, M.E. 1964b. Correlation functions and the critical region of simple fluids. Journal of Mathematical Physics 5/7: 944–962.

    ADS  Google Scholar 

  • Fisher, M.E. 1965. The Nature of Critical Points. In Brittin (1965), pp. 1–159.

  • Fisher, M.E. 1967. The theory of equilibrium critical phenomena. Reports on Progress in Physics 30: 615.

    ADS  Google Scholar 

  • Fisher, M.E. 1995. Foreword in Domb (1996), xiii–xviii.

  • Fisher, M. 1998. Renormalization group theory: Its basis and formulation in statistical physics. Reviews of Modern Physics 70: 653–681.

    ADS  MATH  MathSciNet  Google Scholar 

  • Fisher, M.E. 1999. Renormalization group theory: its basis and formulation in statistical physics. In Cao (1999), pp. 89–135.

  • Flato, M., C. Fronsdal and K.A. Milton. 1979. Selected Papers (1937–1976) of Julian Schwinger. World Scientific, Singapore.

  • Fleck, L. 1935. Entstehung und Entwicklung einer wissenschaftlichen Tatsache. Einführung in die Lehre vom Denkstil und Denkkollektiv. Schwabe und Co., Verlagsbuchhandlung, Basel.

  • Fleck, L. 1979. The Genesis and Development of a Scientific Fact. T.J. Trenn and R.K. Merton (eds.), foreword by Thomas Kuhn. University of Chicago Press, Chicago.

  • Fokas, A. et al. eds. 2002. Highlights of Mathematical Physics. American Mathematical Society, Providence R.I.

  • Fontana, W. and L.W. Buss. 1996. The Barrier of Objects: From Dynamical Systems to Bounded Organizations. In Boundaries and Barriers, J. Casti and A. Karlqvist (eds.), pp. 56–116.

  • Freire, O. 2015. The quantum dissidents – Rebuilding the foundations of quantum mechanics 1950–1990. Springer, New York.

  • Friedman, J. 1997. Deep-Inelastic Scattering and the Discovery of Quarks. In Hoddeson et al. (1997), pp. 566–588.

  • Fritzsch, H. and M. Gell-Mann. 1971. In: Proceedings of the International Conference on Duality and Symmetry, Tel Aviv 1971.

  • Fritzsch, H. and M. Gell-Mann. 1972. In: Proceedings of the International Conference on High Energy Physics, Chicago 1972.

  • Fritzsch, H., M. Gell-Mann and H. Leutwyler. 1973. Advantages of the color octet gluon picture. Physics Letters B 47: 365–368.

    ADS  Google Scholar 

  • Fritzsch, H. 2012. The history of QCD. CERN COURIER 27: 2012.

    Google Scholar 

  • Galison, P. and D. Stump, eds. 1996. The Disunity of Science. Boundaries, Contexts, and Power. Stanford University Press, Stanford.

  • Gavroglu, K., J. Christianidis and E. Nicolaidis, eds. 1994. Trends in the Historiography of Science. Kluwer Academic Publishers, Dordrecht.

  • Gavroglu, K. and A. Simões. 2012. Neither Physics nor Chemistry. The MIT Press, Cambridge, MA.

  • Ge, M.L. and C.N. Yang, eds. 1989. Braid group, knot theory and statistical mechanics. World Scientific.

  • Gell-Mann, M. 1957. Specific Heat of a Degenerate Electron Gas at High Density. Physical Review 106: 369–372.

    ADS  MATH  MathSciNet  Google Scholar 

  • Gell-Mann, M. 1997. Quarks, Color, and QCD. In Hoddeson et al. (1997), pp. 625–633.

  • Gell-Mann, M. and F.E. Low. 1954. Quantum Electrodynamics at Small Distances. Physical Review 95: 1300–1312.

    ADS  MATH  MathSciNet  Google Scholar 

  • Gell-Mann, M. and K.A. Bruckner. 1957. Correlation Energy of an Electron Gas at High Density. Physical Review 106: 364–368.

    ADS  MATH  Google Scholar 

  • Georgi, H. 2011. Sidney Coleman. 1937–2007. Biographical Memoirs of the National Academy of Sciences. November, pp. 17–37.

  • Ginzburg, V.L. and L.D. Landau. 1950. On the theory of superconductivity. Journal of Experimental and Theoretical Physics (USSR) 20: 1064.

    Google Scholar 

  • Giovannini, A. ed. 2000. The Legacy of Leon van Hove. World Scientific, Singapore.

  • Glashow, S.L. 1961. Partial-symmetries of weak interactions. Nuclear Physics 22: 579–588.

    ADS  Google Scholar 

  • Glimm, J. and A. Jaffe. 1985. Quantum Field Theory and Statistical Mechanics: Expositions. Birkhäuser Boston, Boston, MA.

  • Glimm, J. and A. Jaffe. 1987. Quantum physics: a functional integral point of view. 2nd ed. Springer-Verlag, New York.

  • Goldstone, J. 1957. Derivation of the Brueckner Many-Body Theory. In: Proceedings of the Royal Society (London) A239: 267–279.

  • Goldstone, J. 1961. Field Theories with Superconductor Solutions. Nuovo Cimento 19: 154–164.

    MATH  MathSciNet  Google Scholar 

  • Goldstone, J., A. Salam, S. Weinberg. 1962. “Broken Symmetries. Physical Review 127: 965–970.

    ADS  MATH  MathSciNet  Google Scholar 

  • Gomes, L.C., J.D. Walecka and V.F. Weisskopf. 1958. Properties of nuclear matter. Annals of Physics 3: 241–274.

    ADS  MATH  Google Scholar 

  • Gottfried, K. and V.F. Weisskopf. 1984–1986. Concepts of particle physics. Clarendon Press, Oxford; Oxford University Press, New York. 2 vols.

  • Gottfried, K. and K.G. Wilson. 1997. Science as a cultural construct. Nature 386: 545–547.

    ADS  Google Scholar 

  • Gray, J. 2008. Plato’s ghost: the modernist transformation of mathematics. Princeton University Press.

  • Gray, J. 2013. Henri Poincaré: a scientific biography. Princeton University Press, Princeton.

  • Gross, D.J. and F. Wilczek. 1973. Ultraviolet behavior of non-abelian gauge theories. Physical Review Letters 30: 1343.

    ADS  Google Scholar 

  • Gross, D.J. and F. Wilczek. 1973. Asymptotically free gauge theories. I. Physical Review D 8: 3633.

    ADS  Google Scholar 

  • Gross, D.J. and F. Wilczek. 1974. Asymptotically free gauge theories. II. Physical Review D 9: 980.

    ADS  Google Scholar 

  • Gross, D. 1975. Applications of the renomalization group to high energy physics. In Balian and Zinn-Justin (1975), pp. 141–250.

  • Gross, D. 1997. Asymptotic Freedom and the Emergence of QCD. In Hoddeson et al. (1997), pp. 199–232.

  • Gross, D.J. 1999a. Twenty five years of asymptotic freedom. Nuclear Physics B-Proceedings Supplements 74: 426–446.

    ADS  Google Scholar 

  • Gross, D. 1999b. The triumph and limitations of quantum field theory. In Cao (1999), pp. 56–67.

  • Grove, K. 2001. Review of Metric structures for Riemannian and non-Riemannian spaces, by M. Gromov. Bulletin of the American Mathematical Society 38: 353–363.

    Google Scholar 

  • Guralnik, G.S., C.R. Hagen and T.W.B. Kibble. 1964. Global Conservation Laws and Massless Particles. Physical Review Letters 13: 585–587.

    ADS  Google Scholar 

  • Guralnik, G.S. 2009. The history of the Guralnik, Hagen and Kibble development of the theory of spontaneous symmetry breaking and gauge particles. International Journal of Modern Physics A 24: 2601–2627.

    ADS  MATH  Google Scholar 

  • Guth, A.H., K. Huang and L. Jaffe. 1983. Asymptotic Realms of Physics (Cambridge, MA: MIT Press).

  • Haag, R. 2010. Some people and some problems met in half a century of commitment to mathematical physics. The European Physical Journal H 35: 263–307.

    ADS  MathSciNet  Google Scholar 

  • Haar, D. ter. (Ed.). 1965–1969. L.D. Landau (Oxford, New York: Pergamon Press). 2 v.

  • Hacking, I. 1981. From the Emergence of Probability to the Erosion of Determinism. In Hintikka et al. (1981), pp. 105–123.

  • Hacking, I. 1981. Introduction. In Hacking, I. ed. (1901) Scientific Revolutions. Oxford University Press, Oxford, pp. 1–5.

  • Hacking, I. 1982. Language, Truth and Reason. In Hollis and Lukes (1962), pp. 48–66. Reprinted in Hacking (2002), pp. 159–179.

  • Hacking, I. 1983. Representing and Intervening. Cambridge University Press, Cambridge.

  • Hacking, I. 1985. Styles of scientific reasoning. In Rajchman, J. and West, C. eds. Post-analytical Philosophy. Columbia University Press, New York, pp. 145–165.

  • Hacking, I. 1987. Was there a probabilistic revolution 1800–1930. In Krüger et al. (1907).

  • Hacking, I. 1992. The self-vindication of the laboratory sciences. In Pickering (1992), pp. 29–64.

  • Hacking, I. 1992. ‘Style’ for historians and philosophers. Studies in History and Philosophy of Science 23: 1–20. Reprinted in Hacking (2002) Historical Ontology, pp. 178–199.

    MathSciNet  Google Scholar 

  • Hacking, I. 1994. Styles of scientific thinking or reasoning: A new analytical tool for historians and philosophers of the sciences. In Gavroglu et al., pp. 31–48.

  • Hacking, I. 1996. The disunities of the sciences. In Galison and Stump (1996), pp. 37–74.

  • Hacking, I. 2002. Historical Ontology. Harvard University Press, Cambridge, MA.

  • Hacking, I. 2006. The Emergence of Probability: a Philosophical Study of Early Ideas about Probability, Induction and Statistical Inference. 2nd ed. Cambridge University Press, Cambridge; New York.

  • Hacking, I. 2009. Scientific Reason. National Taiwan University Press, Taipei, 2009.

  • Hacking, I. 2010. What makes mathematics mathematics? In Lear and Oliver (2010), pp. 82–106. Reprinted in Pitti (2011), pp. 257–285.

  • Hacking, I. 2012. ‘Language, truth and reason’ 30 years later. Studies in History and Philosophy of Science 43: 599–609.

    Google Scholar 

  • Haroche, S. and J.M. Raimond. 2006. Exploring the quantum: atoms, cavities and photons (Oxford; New York: Oxford University Press).

  • Heims, S.J. 1980. John Von Neumann and Norbert Wiener: from mathematics to the technologies of life and death. MIT Press, Cambridge, Mass.

  • Heitler, W. 1936. The quantum theory of radiation. The Clarendon Press, Oxford.

  • Higgs, P.W. 1964. Broken Symmetries and the Masses of Gauge Bosons. Physical Review Letters 13: 508–509.

    ADS  MathSciNet  Google Scholar 

  • Higgs, P.W. 1997. Spontaneous breaking of symmetry and gauge theories. In Haddeson et al. (1997), pp. 506–510.

  • Hillis, D. 1989. Richard Feynman and the Connection Machine. Physics Today 42/2: 78.

    ADS  Google Scholar 

  • Hintikka, J., D. Gruender and E. Agazzi, eds. 1981. Probabilistic Thinking, Thermodynamics and the Interaction of the History and Philosophy of Science. In: Proceedings of the 1978 Pisa Conference on the History and Philosophy of Science. 2 Vols. Reidel, Dordrecht. Vol. II.

  • Hoddeson, L. and V. Daitch. 2002. True genius: the life and science of John Bardeen: the only winner of two Nobel Prizes in physics. Joseph Henry Press, Washington, D.C.

  • Hoddeson, L., L. Brown, M. Riordan and M. Dresden, eds. 1997. The Rise of the Standard Model. Particle Physics in the 1960s and 1970s. Cambridge University Press, Cambridge.

  • Hollis, M. and S. Lukes, eds. 1962. Rationality and Relativism. Blackwell, Oxford, pp. 48–66.

  • Hooft, G.’t. 1971. Renormalizable lagrangians for massive Yang-Mills fields. Nuclear Physics B 35: 167–188.

    ADS  Google Scholar 

  • Hooft, G.’t. 1997a. Renormalization of Gauge Theories. In Hoddeson et al. (1997), pp. 179–198.

  • Hooft, G.’t. 1997b. In search of the ultimate building blocks. Cambridge University Press, Cambridge, England; New York.

  • Humphreys, P. 2011. Computational Science and Its Effects. In Carrier and Nordmann (2011), pp. 131–142.

  • Impagliazzo, J., J.G. Glimm and I. Singer, eds. 1990. The legacy of John von Neumann (Proceedings of Symposia in Pure Mathematics, vol. 50). American Mathematical Society, Providence, RI.

  • Jackiw, R. 1995. Diverse Topics in Theoretical and Mathematical Physics. World Scientific Publishing, Singapore.

  • Jackiw, R. 1999. The unreasonable effectiveness of quantum field theory. In Cao (1999), pp. 148–160.

  • Jaffe, A. and F. Quinn. 1993. Theoretical mathematics: toward a cultural synthesis of mathematics and theoretical physics. Bulletin of the American Mathematical Society 21: 1–13.

    MathSciNet  Google Scholar 

  • Jaffe, A. 1999. Where does quantum field theory fit into the big picture? In Cao (1999), pp. 136–147.

  • Jasanoff, S. 2006. States of Knowledge: The Co-Production of Science and the Social Order. Routledge, London.

  • Jauch, M. and F. Rohrlich. 1955. The theory of photons and electrons; the relativistic quantum field theory of charged particles with spin one-half. Cambridge, Mass.: Addison-Wesley.

  • Jona-Lasinio, G. 2002. Cross Fertilization in Theoretical Physics: The Case of Condensed Matter and Particle Physics. In Fokas et al. (2002), pp. 143–152.

  • Jordan, P. 1932. Über eine Klasse nichtassoziativer hyperkomplexer Algebren. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1932: 569–575.

  • Jordan, P. 1933. Ueber eine Klasse nichtassoziativer hyperkomplex Algebren. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1933: 209–217.

  • Jordan, P., J. von Neumann and E.P. Wigner. 1934. On an algebraic generalization of the quantum mechanical formalism, Annals of Mathematics 35: 29–64.

    MathSciNet  Google Scholar 

  • Jost, R. ed. 1969. In: Proceedings of the International School of Physics “Enrico Fermi” Course XLV. Academic Press, New York.

  • Judson, H. 1979. The eighth day of creation : makers of the revolution in biology. Simon and Schuster, New York.

  • Jungnickel, C. and R. McCormmach. 1986. Intellectual Mastery of Nature: Theoretical Physics from Ohm to Einstein. Volume 2: The New Mighty Theoretical Physics 1870–1925. The University of Chicago Press, Chicago.

  • Kadanoff, L.P. 1960. Theory of many-particle systems: superconductivity; and the acceleration of a charged particle by a quantized electric field. PhD dissertation. Department of Physics. Harvard University.

  • Kadanoff, L.P. 1966. Scaling Laws for Ising Models Near T c. Physics 2: 263.

    Google Scholar 

  • Kadanoff, L.P. 1966. Scaling Laws for Ising Models Near Critical Points. In: Proceedings 1966 Midwest Conference on Theoretical Physics. Bloomington, Indiana.

  • Kadanoff, L.P. 1966. Spin-Spin Correlation in the Two-Dimensional Ising Model. Nuovo Cimento 44: 276.

    Google Scholar 

  • Kadanoff, L.P. 1986. Computational physics: pluses and minuses. Physics Today 39/7: 7–9.

    ADS  Google Scholar 

  • Kadanoff, L.P. 1986. On two levels. Physics Today 39/9: 7–9.

    ADS  Google Scholar 

  • Kadanoff, L.P. 1999. From Order to Chaos II. Essays: Critical, Chaotic and Otherwise. World Scientific, Singapore River Edge, N.J.

  • Kadanoff, L.P. 2000. Statistical physics: statics, dynamics and renormalization. World Scientific, Singapore; River Edge, N.J.

  • Kadanoff, L.P. 2009. More is the same; phase transitions and mean field theories. Journal of Statistical Physics 137: 777–797.

    ADS  MATH  MathSciNet  Google Scholar 

  • Kadanoff, L. 2010. Theories of matter: infinities and renormalization. In Batterman (2011), arXiv:1002.2985.

  • Kadanoff, L.P. 2013. Relating Theories via Renormalization. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44: 22–39.

    MATH  MathSciNet  Google Scholar 

  • Kadanoff, L. 2014. Charlie Slichter & the gang at Urbana. The Early Years of Condensed Matter Physics at Illinois – in Celebration of the 80th Birth Year of Charles P. Slichter. arXiv:1403.2458.

  • Kadanoff, L.P. 2014. Kenneth Geddes Wilson: An Appreciation. To be published in Journal of Statistical Physics K.G. Wilson Memorial Issue. arXiv:1307.0152v1.

  • Kadanoff, L. and G. Baym. 1962. Quantum Statistical Mechanics. Green’s Function Methods in Equilibrium and Nonequilibrium Problems. W.A. Benjamin, New York.

  • Kadanoff, L.P. and P.C. Martin. 1961. Transport Theory for Electron-Phonon Interactions in Metals. Physical Review 124: 670.

    ADS  MATH  MathSciNet  Google Scholar 

  • Kadanoff, L. and P. Martin. 1963. Hydrodynamic equations and correlation functions. Annals of Physics 24: 419–469.

    ADS  MATH  MathSciNet  Google Scholar 

  • Kadanoff, L.P. et al. 1967. Static Phenomena Near Critical Points: Theory and Experiment. Reviews of Modern Physics 39: 395–431.

    ADS  Google Scholar 

  • Kaiser, D. 1999. Do Feynman diagrams endorse a particle ontology? The role of Feynman diagrams in S-matrix theory. In Cao (1999), pp. 3433–56.

  • Kastler, D. 2003. Rudolf Haag - 80. Communications in Mathematical Physics 237: 3–6.

    ADS  MATH  MathSciNet  Google Scholar 

  • Katzir, S. 2013. Theoretical Challenges by Experimental Physics: Radiation and Its Interaction with Matter. In Katzir et al. (2013), 3: 11–27.

  • Katzir, S., C. Lehner and J. Renn, eds. 2013. Traditions and Transformations in the History of Quantum Physics HQ–3: Third International Conference on the History of Quantum Physics, Berlin, June 28–July 2, 2010. Edition Open Access. 2013.

  • Kaufman, B. 1949. Crystal Statistics. II. Partition Function Evaluated by Spinor Analysis. Physical Review 76: 1232–1244.

    ADS  MATH  Google Scholar 

  • Kaufman, B. and L. Onsager. 1949. Crystal Statistics. III. Short-Range Order in a Binary Ising Lattice. Physical Review 76: 1244–52.

    ADS  MATH  Google Scholar 

  • Kemble, E. 1929. The General Principles of Quantum Mechanics. Part I. Physical Review. Supplement (Reviews of Modern Physics) 1/2: 157–215.

    ADS  Google Scholar 

  • Kendall, H.W. 1991. Deep inelastic scattering: Experiments on the proton and the observation of scaling. Reviews of Modern Physics 63: 597–614.

    ADS  Google Scholar 

  • Kerr, C. 1991. The great transformation in higher education, 1960–1980. The uses of the university. State University of New York Press, Albany, N.Y..

  • Khinchin, I.A. 1949. Mathematical foundations of statistical mechanics. Translated from the Russian by G. Gamow. Dover Publications, New York.

  • Kibble, T.W.B. 2009a. Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism. Scholarpedia 4: 6441.

    ADS  Google Scholar 

  • Kibble, T.W. 2009b. Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism (history). International Journal of Modern Physics A 24: 6001–6009.

    ADS  MATH  Google Scholar 

  • Kinoshita, T. ed. 1990. Quantum Electrodynamics. World Scientific, Singapore.

  • Kipnis, A.Y., B.E. Yavelov and J.S. Rowlinson. 1996. Van der Waals and Molecular Science. Clarendon Press, Oxford, New York.

  • Kirzhnits, D.A. and A.D. Linde, 1972. Macroscopic consequences of the Weinberg model. Physics Letters B 42: 471–474.

    ADS  Google Scholar 

  • Kirzhnits, D.A. and A.D. Linde. 1976. Symmetry behavior in gauge theories. Annals of Physics 101: 195–238.

    ADS  Google Scholar 

  • Kragh, H. 1999. Quantum generations: a history of physics in the twentieth century. Princeton, N.J.: Princeton University Press.

  • Kragh, H. 2012. Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913–1925. Oxford University Press, Oxford.

  • Kragh, H. 2013. Niels Bohr between physics and chemistry. Physics Today 66: 36–40.

    ADS  Google Scholar 

  • Kramers, H.A. and G.H. Wannier. 1941. Statistics of the two dimensional ferromagnet. I and II. Physical Review 60: 252 and 263.

    ADS  MathSciNet  Google Scholar 

  • Krieger, M. 1996. Constitutions of matter: mathematically modeling the most everyday of physical phenomena. University of Chicago Press, Chicago.

  • Krieger, M.H. 2003. Doing Mathematics: convention, subject, calculation, analogy. World Scientific, River Edge, N.J., 2003.

  • Krieger, M.H. 2012. Doing physics: how physicists take hold of the world. Second edition. Indiana University Press, Bloomington.

  • Krige, J. and D. Pestre. 1997. Science in the Twentieth Century. Harwood Academic Publishers, Amsterdam.

  • Krüger, L., L. Daston and L.J. Heidelberger, eds. 1987. The Probabilistic Revolution. Vol. 1. Ideas in History. MIT Press, Cambridge, Mass.

  • Kuhn, T.S. 1978. Black-body theory and the quantum discontinuity, 1894–1912. New York: Oxford University Press.

  • Kuhn, T.S. 1987. What are scientific revolutions? In Krüger et al. (1987).

  • Kusch, M. 2010. Hacking’s historical epistemology: a critique of styles of reasoning. Studies in History and Philosophy of Science 41: 158–173.

    Google Scholar 

  • Lamb, W.E. and R.C. Retherford. 1946. Experiment to determine the fine structure of the Hydrogen atom. Columbia University Radiation Laboratory Report, 1946, pp. 18–26.

  • Lamb, W.E. and R.C. Retherford. 1947. Fine structure of the hydrogen atom by microwave method. Physical Review 72: 241–243.

    ADS  Google Scholar 

  • Landau, L. 1937. Phys. Zurn. Sowjetunion 11: 26 and 545. English translation in ter Haar (1969). Landau.

    MATH  Google Scholar 

  • Landau, L.D. 1955. On the quantum theory of fields. In Pauli, ed. Niels Bohr and the development of physics, p. 52.

  • Landau, L.D., A. Abrikosov and L. Halatnikov. 1956. On the quantum theory of fields. Il Nuovo Cimento 3: 80–104.

    MATH  MathSciNet  Google Scholar 

  • Landau, L.D. and E.M. Lifshitz. 1969. Statistical physics. Translated from the Russian by J.B. Sykes and M.J. Kearsley. 2d rev. and enl. ed. Pergamon Press, Oxford, New York.

  • Lear, J. and A. Oliver, eds. 2010. The Force of Argument: Essays in Honour of Timothy Smiley. Routledge, London.

  • Lebowitz, J.L. 1968. Statistical Mechanics – A Review of Selected Rigorous Results. Annual Review of Physical Chemistry 19: 389.

    ADS  Google Scholar 

  • Lebowitz, J.L. 1976. Statistical Mechanics of Equilibrium Systems: Some Rigorous Results. In Brey and Jones (1976).

  • Lee, B.W. and J. Zinn-Justin. 1972a. Spontaneously broken gauge symmetries. I. Preliminaries. Physical Review D 5: 3121.

    ADS  Google Scholar 

  • Lee, B.W. and J. Zinn-Justin. 1972b. Spontaneously broken gauge symmetries. II. Perturbation theory and renormalization. Physical Review D 5: 3137.

    ADS  Google Scholar 

  • Lenard, A. 1973. Statistical mechanics and mathematical problems: Battelle Seattle 1971 Rencontres. Springer-Verlag, Berlin; New York.

  • Lepage, G.P. and T. Kinoshita. 1990. Quantum Electrodynamics for Nonrelativistic Systems and High Precision Determination of α. In Kinoshita 1990, 81–91.

  • Lepage, G.P. 2005. What is renormalization?. arXiv:hep-ph/0506330.

  • Leslie, S.W. 1993. The Cold War and American Science. The Military-Industrial-Academic Complex at MIT and Stanford. Columbia University Press, New York.

  • Lieb, E.H. and M. Loss. 2001. Analysis. 2nd ed. American Mathematical Society, Providence, R.I.

  • Lieb, E.H. and R. Seiringer. 2010. The stability of matter in quantum mechanics. Cambridge University Press, Cambridge, UK; New York.

  • Lipkin, H. 1997. Quark Models and Quark Phenomenology. In Hoddeson et al. (1997), pp. 542–560.

  • Longuet-Higgins, H.C. and M.E. Fisher. 1991. Lars Onsager. 27 November 1903–5 October 1976. Biographical Memoirs of the National Academy of Sciences 60: 182–233.

    Google Scholar 

  • Lorentz, H.A. 1909. The theory of electrons and its applications to the phenomena of light and radiant heat; a course of lectures delivered in Columbia University, New York, in March and April, 1906. B.G. Teubner, Leipzig; G.E. Stechert & Co, New York.

  • Lwoff, A. and A. Ullmann. 1980. Les Origines de la biologie moléculaire: un hommage à Jacques Monod. Études vivantes, Paris; Montréal.

  • Mackey, G.W. 1949. A theorem of Stone and von Neumann. Duke Mathematical Journal 16: 313–326.

    MATH  MathSciNet  Google Scholar 

  • Mackey, G.W. 1990. von Neumann and the early days of ergodic theory. In Impagliazzo et al. (1990), pp. 25–38.

  • Malament, D. 2002. Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics. Open Court, La Salle.

  • Martin, P. and J. Schwinger. 1959. The Theory of Many Particle Systems I. Physical Review 115: 1342–1573.

    ADS  MATH  MathSciNet  Google Scholar 

  • Martin, P. 1979. Schwinger and Statistical Physics: a Spin-off Success Story and some Challenging Sequels. Physica A 96: 70–88.

    ADS  Google Scholar 

  • Mattuck, R.D. 1967. A guide to Feynman diagrams in the many-body problem. McGraw-Hill Pub. Co, London, New York.

  • Maurin, K. and R. Raczka, eds. 1976. Mathematical Physics and Physical Mathematics. D. Reidel Publishing Company, Dordrecht, Holland.

  • Mehra, J., ed. 2001. Historical and Biographical Reflections and Syntheses. Springer, Berlin, Heidelberg.

  • Mehra, J. and H. Rechenberg. 1982. The historical development of quantum theory. Springer-Verlag, New York, c1982- v.; 25 cm.

  • Mehra, J. and H. Rechenberg. 1987. Erwin Schrödinger and the rise of wave mechanics. Springer-Verlag, New York.

  • Mehra, J. and H. Rechenberg. 2001. The Completion of Quantum Mechanics 1926–1941. Springer, New York, NY.

  • Michel, L. ed. 1998. Les Relations entre les Mathématiques et la Physique Théorique. Festschrift for the 40th anniversary of the I.H.E.S. Bures-sur-Yvette: Institut des Hautes Études Scientifiques.

  • Mladenović, M. 1998. The defining years in nuclear physics, 1932–1960s. Institute of Physics Publishing, Bristol; Philadelphia.

  • Molecular beams. New York, Published for the American Association of Physics Teachers by the American Institute of Physics [1965] 2v.

  • Morrison, M.C. 1998. Modelling nature: Between physics and the physical world. Philosophia naturalis 35: 65–85.

    MathSciNet  Google Scholar 

  • Morrison, M. 1999. Models as autonomous agents. Ideas in Context 52: 38–65.

    Google Scholar 

  • Morrison, M. 2007. Unifying scientific theories: Physical concepts and mathematical structures. Cambridge University Press, Cambridge.

  • Mott, N.F. and H. Jones. 1936. The theory of the properties of metals and alloys. The Clarendon Press, Oxford.

  • Mottelson, B. 1991. Problems in Nuclear Physics. In Susuki and Kubo 1991, pp. 67–76.

  • Mudry, C. 2014. Lecture notes on field theory in condensed matter physics. World Scientific, Singapore.

  • Müller-Wille, S. and H.-J. Rheinberger. 2012. A cultural history of heredity. University of Chicago Press, Chicago.

  • Murray, F.J. and J. von Neumann. 1937. On rings of operators. II. Transactions of the American Mathematical Society 41: 208–248.

    MathSciNet  Google Scholar 

  • Nafe, J.E., E.B. Nelson and I.I. Rabi. 1947. Hyperfine structure of atomic hydrogen and deuterium. Physical Review 71: 914–15.

    ADS  Google Scholar 

  • Nambu, Y. 1960. Quasi-particles and gauge invariance in the theory of superconductivity. Physical Review 117: 648.

    ADS  MathSciNet  Google Scholar 

  • Nambu, Y. and G. Jona-Lasinio. 1961. Dynamical model of elementary particles based on an analogy with superconductivity. I, II. Physical Review, 122: 345 and 124: 246.

    ADS  Google Scholar 

  • Nambu, Y. 2008. A Superconductor Model of Elementary Particles and its Consequences. International Journal of Modern Physics A 23: 4063–4079.

    ADS  MATH  Google Scholar 

  • Negele, J.W. 2001. Understanding Hadron Structure Using Lattice QCD. arXiv:hep-lat/0107010.

  • Negele, J.W. and H. Orland. 1988. Quantum many-particle systems. Addison-Wesley Pub. Co, Redwood City, Calif..

  • Nelson, D. 1999. What is fundamental physics? A renormalization group perspective. In Cao 1999, pp. 264–266.

  • Nernst, W. 1896. Die Ziele der physikalischen Chimie: Festrede gehalten am 2. Juni 1896 zur Einweihung des Instituts für physikalische Chimie und Elektrochimie der Georgia Augusta zu Göttingen. Vandenhoeck & Ruprecht, Göttingen.

  • Ng, Y.J. ed. 1996. Julian Schwinger: the physicist, the teacher, and the man. World Scientific, Singapore.

  • Onsager, L. 1944. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Physical Review 65: 117.

    ADS  MATH  MathSciNet  Google Scholar 

  • Oppenheimer, J.R. 1941. The mesotron and the quantum theory of fields. In Nuclear Physics: University of Pennsylvania Bicentennial Conference. University of Pennsylvania Press, Philadelphia.

  • Osterwalder, K. and R. Schrader. 1973. Axioms for Euclidean Green’s Functions. Communications in Mathematical Physics 31: 83–112.

    ADS  MATH  MathSciNet  Google Scholar 

  • Pais, A. 1982. Subtle is the Lord ...: The Science and the Life of Albert Einstein. Oxford University Press, Oxford.

  • Pais, A. 1986. Inward bound: of matter and forces in the physical world. Clarendon Press, Oxford [Oxfordshire]; Oxford University Press, New York.

  • Pais, A. 2000. The genius of science: a portrait gallery. Oxford University Press, Oxford; New York.

  • Pauli, W. 1935–6. The theory of the positron and related topics. Notes by Banesh Hoffman. Princeton NJ: The Institute for Advanced Study.

  • Pauli, W. (Ed.). 1955. Niels Bohr and the development of physics (New York: McGraw-Hill).

  • Pauling, L. and E. Bright Wilson. 1935. Introduction to quantum mechanics, with applications to chemistry. McGraw-Hill book Company, New York, London.

  • Peebles, P.J.E. 1993. Principles of Physical Cosmology (Princeton: Princeton University Press).

  • Peierls, R. 1932. Elektrontheorie der Metalle. Ergebnisse der Exakten Naturwissenschaften 11: 264–322.

    ADS  Google Scholar 

  • Peierls, R. 1936. On Ising’s model of ferromagnetism. Mathematical Proceedings of the Cambridge Philosophical Society 32: 477–481.

    MATH  Google Scholar 

  • Peskin, M. 2014. Ken Wilson: Solving the Strong Interactions. To be published in Journal of Statistical Physics K.G. Wilson Memorial Issue. arXiv:1405.7086.

  • Peskin, M. and D. Schroeder. 1995. An Introduction to Quantum Field Theory. Westview Press, Boulder CO.

  • Pickering, A., ed. 1992. Science as Practice and Culture. University of Chicago Press, Chicago.

  • Pines, D. 1961. The Many-Body Problem. W.A. Benjamin, Inc., New York.

  • Pitti, M. ed. 2011. Best Writing on Mathematics. Princeton University Press, Princeton.

  • Polchinski, J. 1999. Effective Field Theory and the Fermi Surface, arXiv:hep-th/9210046v2.

  • Politzer, H.D. 1973. Reliable perturbative results for strong interactions. Physical Review Letters 30: 1346–1349.

    ADS  Google Scholar 

  • Politzer, H.D. 1974. Asymptotic freedom: An approach to strong interactions. Physics Reports 14: 129–180.

    ADS  Google Scholar 

  • Prawitz, D., B. Skyrms and l. Westerståh Eds. 1994. Logic, Methodology, and Philosophy of Science 9. Proceedings of the Ninth International Congress of Logic, Methodology, and Philosophy of Science. Elsevier, New York.

  • Rabi, I.I., S. Millman, P. Kusch and J.R. Zacharias. 1939. The Molecular Beam Resonance Method for Measuring Nuclear Magnetic Moments. The Magnetic Moments of 3LI6, 3Li7 and 9F19*. Physical Review 55: 526–535.

    ADS  Google Scholar 

  • Radder, H. ed. 2010. The Commodification of Academic Research. The University of Pittsburgh Press, Pittsburgh.

  • Ramsey, N. 1956. Molecular Beams. Oxford University Press, Oxford.

  • Raussen, M. and C. Skau. 2010. Interview with Mikhail Gromov. Notices of the American Mathematical Society 57: 391–403.

    MATH  MathSciNet  Google Scholar 

  • Ren, X., P. Rinke, C. Joas and M. Scheffler. 2012. Random-phase approximation and its applications in computational chemistry and materials science. Journal of Materials Science 47: 7447–7471.

    ADS  Google Scholar 

  • Renn, J. 2013. Schrödinger and the genesis of Wave Mechanics. Max-Planck-Inst. für Wiss.-Geschichte.

  • Rheinberger, H.-J. 2010. On historicizing epistemology. Stanford University Press, Stanford.

  • Rice, S.A. 2008. A Fortunate Life in Physical Chemistry. Annual Review of Physical Chemistry 59: 1–26.

    ADS  Google Scholar 

  • Riesselmann, K. 2005. Computing the quarks. Symmetry Magazine. November 2005.

  • Riesz, F. 1913. Les systèmes d’équations linéaires à une infinité d’inconnues. Gauthier-Villars, Paris.

  • Rosenfeld, L. 1951. Theory of electrons. North-Holland Publishing Co., Amsterdam; Interscience Publishers, New York.

  • Rowe, D.E. 1989. Klein, Hilbert, and the Gottingen mathematical tradition. Osiris, 186–213.

  • Rowe, D.E. 2004. Making mathematics in an oral culture: Göttingen in the era of Klein and Hilbert. Science in Context 17: 85–129.

    MATH  MathSciNet  Google Scholar 

  • Ruelle, D. 1963. Statistical Mechanics of quantum systems of particles. Helvetia Physica Acta 36: 789–799.

    MATH  MathSciNet  Google Scholar 

  • Ruelle, D. 1963. Classical Statistical Mechanics of a system of particles. Helvetia Physica Acta 36: 183–197.

    MATH  MathSciNet  Google Scholar 

  • Salam, A. 1968. In Svartholm, N. ed. Elementary Particle Physics: Relativistic Groups and Analyticity”. Eighth Nobel Symposium. Almquvist and Wiksell, Stockholm. p. 367.

  • Schnitzer, H. 1999. The quantum field theory of physics and of mathematics. In Cao (1999), pp. 161–163.

  • Schrieffer, J.R. 1964. The Theory of Superconductivity. W.A. Benjamin, New York.

  • Schroer, B. 2010. Pascual Jordan’s legacy and the ongoing research program in quantum field theory. European Physical Journal H 35: 377–434.

    ADS  Google Scholar 

  • Schultz, T.D., D.C. Mattis and E.H. Lieb. 1964. Two-Dimensional Ising Model as a Soluble Problem of Many Fermions. Reviews of Modern Physics 856–871.

  • Schweber, S.S. 1994. QED and the Men who Made IT. Princeton University Press, Princeton.

  • Schweber, S.S. 1997. A historical perspective on the rise of the standard model. In Hoddeson et al. (1997), pp. 645–685.

  • Schweber, S.S. 2002. Enrico Fermi and Quantum Electrodynamics 1929–1932. Physics Today 55/6: 31-36.

    ADS  Google Scholar 

  • Schweber, S.S. 2005. The sources of Schwinger’s Green’s functions. Proceedings National Academy of Sciences 102: 7783-7788.

    ADS  MATH  MathSciNet  Google Scholar 

  • Schweber, S.S. 2012. Nuclear Forces. The making of the physicist Hans Bethe. Harvard University Press, Cambridge MA.

  • Schweber, S.S. 2014. Writing the Biography of Hans Bethe: Contextual History and Paul Forman. Physics in Perspective 16: 179-214.

    ADS  Google Scholar 

  • Schweber, S.S. and G. BenPorat. 2015. Quantum Chemistry and the Quantum Revolution.

  • Schwinger, J. 1951. On Green’s functions of quantized fields. I and II. Proceedings National Academy of Sciences 37: 452-459.

    ADS  MathSciNet  Google Scholar 

  • Schwinger, J. 1958. On the Euclidean structure of relativistic field theory, Proceedings of the National Academy of Sciences USA 44: 956.

    ADS  MATH  MathSciNet  Google Scholar 

  • Schwinger, J. 1961. Gauge Invariance and Mass. I. Physical Review 125: 397.

    ADS  MathSciNet  Google Scholar 

  • Schwinger, J. 1962. Gauge Invariance and Mass. II. Physical Review 128: 2425.

    ADS  MATH  MathSciNet  Google Scholar 

  • Schwinger, J. 1996. The Greening of Quantum Field Theory: George and I. In Ng 1996, pp. 13-28.

  • Schwinger, J.S. 2000. A quantum legacy: seminal papers of Julian Schwinger. Milton, K.A. ed. World Scientific, Singapore.

  • Segrè, E. ed. 1953–1959. Experimental Nuclear Physics. Vol. I. Wiley, New York.

  • Seitz, F. 1940. Quantum Theory of Solids. McGraw Hill, New York.

  • Serot, B. and J.D. Walecka. 1986. The Relativistic Nuclear Many-body Problem. Advances in Nuclear Physics 16: 1-327.

    Google Scholar 

  • Seth, S. 2010. Crafting the quantum : Arnold Sommerfeld and the practice of theory, 1890–1926. MIT Press, Cambridge, Mass.

  • Siegmund-Schultze, R. 2009. Mathematicians Fleeing from Nazi Germany. Princeton University Press, Princeton.

  • Sigurdsson, S. 1991. Hermann Weyl, mathematics and physics, 1900–1927. PhD dissertation. Department of the History of Science. Harvard University. Harvard Depository. HU90.13356.5.

  • Sigurdsson, S. 1996. Physics, Life, and Contingency: Born, Schrödinger, and Weyl in Exile. In, Mitchell G. Ash, M.G. and Söllner, A. eds., (1996), pp. 48-70.

  • Singer, I.M. 2008. Differential geometry, fiber bundles and physical theories. Physics Today 35: 41-44.

    Google Scholar 

  • Slater, J.C. 1951. The Electron Theory of Solids. American Journal of Physics 19: 368.

    ADS  MATH  MathSciNet  Google Scholar 

  • Slater, J.C. 1939. Introduction to chemical physics. 1st ed. McGraw-Hill, New York, London.

  • Smith, G.E. (2002). The Methodology of the Principia. In Cohen and Smith (2002), pp. 138-173.

  • Smith, G.E. 2007. Three lectures entitled “Turning Data into Evidence: Three Lectures on the Role of Theory in Science”, presented at Stanford University under the auspices of the Patrick Suppes Center for the Interdisciplinary Study of Science and Technology, Stanford CA, February 22, 2007.

  • Smith, G.E. 2007a. Closing the Loop: Testing Newtonian Gravity, Then and Now. The first lecture of Smith (2007).

  • Smith, G.E. 2007b. Getting Started: Building Theories from Working Hypotheses. The second lecture of Smith, G.E. (2007).

  • Smith, G.E. 2007c. Gaining Access: Using Seismology to Probe the Earth’s Insides. The third lecture of Smith, G.E. (2007).

  • Smith, G.E. 2002. From the Phenomenon of the Ellipse to an Inverse-Square Force: Why Not?. In Malament (2002), pp. 31-70.

  • Sommerfeld, A. 1929. Atombau und Spektrallinien: Wellenmechanischer Ergänzungsband. F. Vieweg, Braunschweig.

  • Soo, M. and C. Carson. 2004. Managing the research university: Clark Kerr and the University of California. Minerva 42: 215-236.

    Google Scholar 

  • Staley, R. 2013. Trajectories in the History and Historiography of Physics in the Twentieth Century. History of Science li: 151-177.

  • Stein, H. 1994. Some reflections on the structure of our knowledge in Physics. In Prawitz et al., pp. 633-655.

  • Sternberg, S. 2006. General covariance and the passive equations of physics. The Academy of Sciences and Humanities, Jerusalem.

  • Stone, M.H. 1932. Linear Transformations in Hilbert Space and their Applications to Analysis. American Mathematical Society, New York.

  • Streater, R.F. and A.S. Wightman. 1964. W.A. Benjamin, New York.

  • Stueckelberg, E.C.G. and A. Petermann. 1953. “La renormalisation des constantes dans la théorie de quanta”, Helvetica Physica Acta 26: 499.

    MATH  MathSciNet  Google Scholar 

  • Susskind, L. and J. Lindesay. 2005. An introduction to black holes, information and the string theory revolution: the holographic universe. World Scientific, Hackensack, NJ.

  • Suzuki, M. and R. Kubo, eds. 1991 Evolutionary Trends in the Physical Sciences. Springer-Verlag, Berlin.

  • Symanzik, K. 1966. Euclidean quantum field theory. I. Equations for a scalar model, Journal Mathematical Physics 7: 510.

    ADS  MathSciNet  Google Scholar 

  • Symanzik, K. 1969. Euclidean quantum field theory, in Jost (1969).

  • Symanzik, K. 1970. Small Distance Behaviour in Field Theory and Power Counting. Communications in Mathematical Physics 18: 227.

    ADS  MATH  MathSciNet  Google Scholar 

  • Symanzik, K. 1971. Small-Distance-Behaviour Analysis and Wilson Expansions. Communications in Mathematical Physics 23: 49.

    ADS  MATH  MathSciNet  Google Scholar 

  • Symanzik, K. 1973. Infrared singularities and small distance analysis. Communications in Mathematical Physics 34: 7-36.

    MathSciNet  Google Scholar 

  • Taylor, J.C. 2001. Gauge Theories in the Twentieth Century. Imperial College Press, London.

  • Tisza, L. 1966. Generalized thermodynamics. M.I.T. Press, Cambridge, Mass.

  • Troyer, M. 2010. Computational Quantum Physics.

  • Tung, W.K. 2009. Bjorken Scaling. Scholarpedia 4: 7412.

    ADS  Google Scholar 

  • Valatin, J. 1958. Comments on the theory of superconductivity. Il Nuovo Cimento 7: 843-857.

    MathSciNet  Google Scholar 

  • van der Waals, J.D. 1910. The Equation of State for Gases and Liquids. Nobel Lecture.˙prizes/physics/laureates/1910/waals-lecture.pdf.

  • van Dongen, J., D. Dieks, J. Uffink and A.J. Kox. 2009. On the history of the quantum: Introduction to the HQ2 special issue. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40: 277-279.

    MATH  MathSciNet  Google Scholar 

  • van Hove, L. 1949. Quelques propriétés générales de l’intégrale de configuration d’un système de particules avec interaction. Physica 15: 951-961.

    ADS  MATH  Google Scholar 

  • van Hove, L. 1950. Sur l’intégrale de configuration pour les systèmes de particules à une dimension. Physica 16: 137-143.

    ADS  MATH  MathSciNet  Google Scholar 

  • van Vleck, J.H. 1932. The theory of electric and magnetic susceptibilities. The Clarendon Press, Oxford.

  • Velo, G. and A.S. Wightman. 1973. Constructive quantum field theory. The 1973 Ettore Majorana international school of mathematical physics. Springer-Verlag, Berlin, New York.

  • von Neumann, J. 1939. On infinite direct products. Compositio Mathematica 6: 1-77.

    MathSciNet  Google Scholar 

  • von Neumann, J. 1940. On rings of operators. Annals of Mathematics 41: 94-161.

    MathSciNet  Google Scholar 

  • von Neumann, J. and E.P. Wigner. 1940. Minimally almost periodic groups. Annals of Mathematics 41.

  • von Weiszäcker, C.F. 19. In Drieschner (2014).

  • Vretenar, D. and W. Weise. 2003. Exploring the nucleus in the context of low-energy QCD. arXiv:nucl-th/0312022v1.

  • Walecka, J.D. 1995. Theoretical Nuclear and Subnuclear Physics. New York, Oxford: Oxford University Press.

  • Wang, J. 1999. American science in an age of anxiety : scientists, anticommunism, and the cold war. University of North Carolina Press, Chapel Hill, NC.

  • Weinberg, S. 1966. Pion scattering lengths. Physical Review Letters 17: 616-621.

    ADS  Google Scholar 

  • Weinberg, S. 1967. A Model of Leptons. Physical Review Letters 19: 1264-1266.

    ADS  Google Scholar 

  • Weinberg, S. 1974. Gauge and global symmetries at high temperature. Physical Review D 9: 3357-3378.

    ADS  Google Scholar 

  • Weinberg, S. 1977. The Search for Unity: Notes for a History of Quantum Field Theory”. Daedalus 106(4). Discoveries and Interpretations: Studies in Contemporary Scholarship II: 17-35.

    Google Scholar 

  • Weinberg, S. 1979. Phenomological Lagrangians. Physica 96A: 327-340.

    ADS  Google Scholar 

  • Weinberg, S. 1983. Why the Renormalization Group is a Good Thing. In Guth et al. eds., pp. 1-19.

  • Weinberg, S. 1986. Superconductivity for particular theorists. Progress of Theoretical Physics Supplement 86: 43-53.

    ADS  Google Scholar 

  • Weinberg, S. 1995–2000. The Quantum Theory of Fields (Cambridge University Press, Cambridge; New York, 3 volumes. See especially Vols. I and II.

  • Weinberg, S. 1997. Changing Attitudes and the Standard Model. In Hoddeson et al. (1997), pp. 36-44.

  • Weinberg, S. 1997. What is Quantum Field Theory, and What Did We Think It Is? arXiv:hep-th/9702027.

  • Weinberg, S. 2008. Cosmology (Oxford: Oxford University Press).

  • Weisskopf, V.F. 1962. Knowledge and wonder; the natural world as man knows it. Doubleday, Garden City, N.Y.

  • Wentzel, G. 1943. Einführung in die Quantentheorie der Wellenfelder. F. Deuticke, Wien.

  • Wenzel, W., M.M. Steiner and K.G. Wilson. 1996. Multireference Basis-Set Reduction. Journal of Quantum Chemistry: Quantum Chemistry Symposium 30: 1325-1330

    Google Scholar 

  • Weyl, H. 1919. Raum. Zeit. Materie; Vorlesungen über allgemeine Relativitätstheorie. Dritte, umgearbeitete Auflage. Verlag von Julius Springer, Berlin.

  • Wheeler, J.A. 1946. Problems and Prospects in Elementary Particle Research. In: Proceedings of the American Philosophical Society 90(1). Symposium on Atomic Energy and Its Implications, pp. 36-47.

  • Widom, B. 1965. Surface tension and molecular correlations near the critical point. Journal of Chemical Physics 43: 3892-3897 and 3897-3901.

    ADS  Google Scholar 

  • Widom, B. 1974. The critical point and scaling theory. Physica 73: 107-118.

    ADS  Google Scholar 

  • Widom, B. 2011. Laboring in the Vineyard of Physical Chemistry. Annual Review of Physical Chemistry 62: 1-18.

    ADS  Google Scholar 

  • Wightman, A.S. 1978. Field Theory, Axiomatic. In: Encyclopedia of Physics. McGraw Hill, New York. pp. 318-321.

  • Wightman, A.S. 1989. The general theory of quantized fields in the 1950s. In Brown et al. (1989).

  • Wightman, A.S. 1999. The general usefulness of a general theory of quantized fields. In Cao (1999), pp. 41-46.

  • Wilczek, F. 1999. Quantum Field Theory. Reviews of Modern Physics 71: S85.

    ADS  Google Scholar 

  • Wigner, E. 1939. On unitary representations of the inhomogeneous Lorentz group. Annals of mathematics 149-204.

  • Wilson, E. Bright. 1952. An introduction to scientific research. [1st ed.]. McGraw-Hill, New York.

  • Wilson, K.G. 1961. An investigation of the Low equation and the Chew-Mandelstam equation. Ph.D. Dissertation. California Institute of Technology.

  • Wilson, K. 1965. Model Hamiltonians for Local Quantum Field Theory. Physical Review 140: B445-B458.

    ADS  Google Scholar 

  • Wilson, K.G. 1970. Operator-product expansions and anomalous dimensions in the Thirring model. Physical Review D 2: 1473-77.

    ADS  Google Scholar 

  • Wilson, K.G. 1971a. Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture. Physical Review B 4.

  • Wilson, K. 1971b. Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior. Physical Review B 4: 3184.

    ADS  MATH  Google Scholar 

  • Wilson, K.G. 1973. Quantum Field - Theory Models in Less Than 4 Dimensions. Physical Review D 7.

  • Wilson, K.G. 1974. Critical phenomena in 3.99 dimensions. Physica 73: 119-128.

    ADS  Google Scholar 

  • Wilson, K. 1974a. Confinement of quarks. Physical Review D 10: 2445

    ADS  Google Scholar 

  • Wilson, K. and J. Kogut. 1974b. The renormalization group and the ε expansion. Physics Reports 12: 75-200.

    ADS  Google Scholar 

  • Wilson, K. 1975a. The renormalization group: Critical phenomena and the Kondo problem. Reviews of Modern Physics 47: 773.

    ADS  MathSciNet  Google Scholar 

  • Wilson, K.G. 1975b. Renormalization group methods. Advances in Mathematics 16: 170-186.

    MathSciNet  Google Scholar 

  • Wilson, K.G. 1977. Quantum chromodynamics on a lattice. In New Developments in Quantum Field Theory and Statistical Mechanics Cargèse 1976 (pp. 143-172). Springer US.

  • Wilson, K.G. 1980. Monte-Carlo calculations for the lattice gauge theory. In Recent developments in gauge theories. Springer-Verlag, Berlin, pp. 363-402.

  • Wilson, K. 1983. The renormalization group and critical phenomena. Reviews of Modern Physics 55: 583.

    ADS  MathSciNet  Google Scholar 

  • Wilson, K.G. 1984. Science, industry, and the new Japanese challenge. Proceedings of the IEEE 72: 6-18.

    Google Scholar 

  • Wilson, K.G. 1990. Ab initio quantum chemistry: A source of ideas for lattice gauge theorists. Nuclear Physics B-Proceedings Supplements 17: 82-92.

    ADS  Google Scholar 

  • Wilson, K.G. 2005. The origins of lattice gauge theory. Nuclear Physics B-Proceedings Supplements 140: 3-19.

    ADS  Google Scholar 

  • Wilson, K.G. and M. Fisher. 1972. Critical exponents in 3.99 dimensions, Physical Review Letters 28: 240.

    ADS  Google Scholar 

  • Wilson, K.G. and W. Zimmermann. 1972. Operator product expansions and composite field operators in the general framework of quantum field theory. Communications in Mathematical Physics 24: 87-106.

    ADS  MATH  MathSciNet  Google Scholar 

  • Wilson, K. and J. Kogut. 1974. The renormalization group and the ε expansion. Physics Reports 12: 75-199.

    ADS  Google Scholar 

  • Wilson, K.G., S.R. White and J.W. Wilkins. 1986. Renormalization-group approach for electronic structure. Physical Review Letters 56: 412.

    ADS  Google Scholar 

  • Wilzcek, F. 1999. Quantum Field Theory. Reviews of Modern Physics 71: S85.

    ADS  Google Scholar 

  • Wise, M.N. ed. 1995. The values of precision. Princeton University Press, Princeton, N.J..

  • Yang, C.N. and T.D. Lee. 1952. Statistical Theory of equations of state and phase transitions I. Theory of Condensation. Physical Review 87: 404-407.

    ADS  MATH  MathSciNet  Google Scholar 

  • Yang, C.N. and R. Mills. 1954. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Physical Review 96: 191-195.

    ADS  MathSciNet  Google Scholar 

  • Yokoyama, K. and R. Kubo. 1990. Appendix: Historical Review and Bibliography of Quantum Electrodynamics. In Kinoshita (1990), pp. 937-954.

  • Zinn-Justin, J. 2002. Quantum Field Theory and Critical Phenomena. Clarendon Press, Oxford; Oxford University Press, New York.

  • Zinn-Justin, J. 2005. Path integrals in quantum mechanics. Oxford University Press, Oxford; New York.

  • Zinn-Justin, J. 2007. Phase transitions and renormalization group. Oxford University Press, Oxford; New York.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Silvan S. Schweber.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schweber, S.S. Hacking the quantum revolution: 1925–1975. EPJ H 40, 53–149 (2015).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


  • Renormalization Group
  • Ising Model
  • Critical Exponent
  • Physical Review
  • Nuclear Force