The European Physical Journal H

, Volume 39, Issue 5, pp 591–613 | Cite as

Attempts at a determination of the fine-structure constant from first principles: a brief historical overview

Article

Abstract

It has been a notably elusive task to find a remotely sensical ansatz for a calculation of Sommerfeld’s electrodynamic fine-structure constant αQED ≈ 1 / 137.036 based on first principles. However, this has not prevented a number of researchers to invest considerable effort into the problem, despite the formidable challenges, and a number of attempts have been recorded in the literature. Here, we review a possible approach based on the quantum electrodynamic (QED) β function, and on algebraic identities relating αQED to invariant properties of “internal” symmetry groups, as well as attempts to relate the strength of the electromagnetic interaction to the natural cutoff scale for other gauge theories. Conjectures based on both classical as well as quantum-field theoretical considerations are discussed. We point out apparent strengths and weaknesses of the most prominent attempts that were recorded in the literature. This includes possible connections to scaling properties of the Einstein-Maxwell Lagrangian which describes gravitational and electromagnetic interactions on curved space-times. Alternative approaches inspired by string theory are also discussed. A conceivable variation of the fine-structure constant with time would suggest a connection of αQED to global structures of the Universe, which in turn are largely determined by gravitational interactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, L.F. and D.D. Harari. 1986. Nucl. Phys. B 264: 487.ADSCrossRefGoogle Scholar
  2. 2.
    Adler, S.L. 1972a. Theories of the Fine-Structure Constant α, Fermilab publication FERMILAB-PUB-72/059-T.Google Scholar
  3. 3.
    Adler, S.L. 1972b. Phys. Rev. D 5: 3021.ADSCrossRefGoogle Scholar
  4. 4.
    Adler S.L., C.G. Callan, D.J. Gross and R. Jackiw. 1972. Phys. Rev. D 6: 2982.ADSCrossRefGoogle Scholar
  5. 5.
    Akhiezer, A.I. and V.B. Berestetskii. 1969. Quantum Electrodynamics (Nauka, Moscow).Google Scholar
  6. 6.
    Antognini, A., F. Nez, K. Schuhmann, F.D. Amaro, F. Biraben, J.M.R. Cardoso, D.S. Covita, A. Dax, S. Dhawan, M. Diepold, L.M.P. Fernandes, A. Giesen, et al. 2013. Science 339: 417.ADSCrossRefGoogle Scholar
  7. 7.
    Assis, A.K.T. 1992. Can. J. Phys. 70: 330.ADSCrossRefGoogle Scholar
  8. 8.
    Assis, A.K.T. 1995. In Advanced Electromagnetism - Foundations, Theory and Applications, edited by T.W. Barrett and D. Grimes (World Scientific, Singapore), pp. 334–331.Google Scholar
  9. 9.
    Baker, M. and K. Johnson. 1969. Phys. Rev. 183: 1292.ADSCrossRefGoogle Scholar
  10. 10.
    Bamber, C., S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, W. Ragg, C. Bula, K.T. McDonald, E.J. Prebys, D.L. Burke, et al. 1999. Phys. Rev. D 60: 092004.ADSCrossRefGoogle Scholar
  11. 11.
    Bastianelli, F., O. Corradini, J.M. Davila and C. Schubert. 2012. Phys. Lett. B 716: 345.ADSCrossRefGoogle Scholar
  12. 12.
    Bastianelli, F., U. Nucamendi, C. Schubert and V.M. Villanueva. 2007. J. High Energy Phys. 0711: 099.ADSCrossRefGoogle Scholar
  13. 13.
    Bastianelli, F. and C. Schubert. 2005. J. High Energy Phys. 0502: 069.ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Bastianelli, F. and C. Schubert. 2009. J. High Energy Phys. 0903: 086.ADSCrossRefGoogle Scholar
  15. 15.
    Binger, M. and S.J. Brodsky. 2003. Phys. Rev. D 69: 095007.ADSCrossRefGoogle Scholar
  16. 16.
    Born, M. and L. Infeld. 1934. Proc. Roy. Soc. London Ser. A 144: 425.ADSCrossRefGoogle Scholar
  17. 17.
    Boyer, T.H. 1968. Phys. Rev. 174: 1764.ADSCrossRefGoogle Scholar
  18. 18.
    Brandenburg, J.E. 1992. IEEE Trans. Plasma Science 20: 944.ADSCrossRefGoogle Scholar
  19. 19.
    Burke, D.L., R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, C. Bula, K.T. McDonald, E.J. Prebys, et al. 1997. Phys. Rev. Lett. 79: 1626.ADSCrossRefGoogle Scholar
  20. 20.
    Callan, J. 1970. Phys. Rev. D 2: 1541.ADSCrossRefGoogle Scholar
  21. 21.
    Casimir, H.B.G. 1953. Physica 19: 846.ADSCrossRefGoogle Scholar
  22. 22.
    Casimir, H.B.G. and D. Polder. 1948. Phys. Rev. 73: 360.ADSCrossRefMATHGoogle Scholar
  23. 23.
    Dattoli, G. 2011, The fine structure constant and numerical alchemy, arXiv:1009.1711 [physics.gen-ph].Google Scholar
  24. 24.
    Dirac, P.A.M. 1938a. Proc. Roy. Soc. London Ser. A 165: 199.ADSCrossRefGoogle Scholar
  25. 25.
    Dirac, P.A.M. 1938b. Proc. Roy. Soc. London Ser. A 167: 148.ADSCrossRefGoogle Scholar
  26. 26.
    Dunne, G.V., H. Gies and C. Schubert. 2002. J. High Energy Phys. 11: 032.ADSCrossRefGoogle Scholar
  27. 27.
    Dyson, F.J. 1952. Phys. Rev. 85: 631.ADSCrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Dzuba, V.A., V.V. Flambaum and J.K. Webb. 1999. Phys. Rev. Lett. 82: 888.ADSCrossRefGoogle Scholar
  29. 29.
    Eddington, A.S. 1924. The Mathematical Theory of Relativity (Cambridge University Press, Cambridge, England).Google Scholar
  30. 30.
    Eddington, A.S. 1931. Proc. Camb. Phil. Soc. 27: 15.ADSCrossRefGoogle Scholar
  31. 31.
    Fischer, M., N. Kolachevsky, M. Zimmermann, R. Holzwarth, T. Udem, T.W. Hänsch, M. Abgrall, J. Grünert, I. Maksimovic, S. Bize, H. Marion, F. Pereira Dos Santos, et al. 2004. Phys. Rev. Lett. 92: 230802.ADSCrossRefGoogle Scholar
  32. 32.
    Gell-Mann, M. and F.E. Low. 1954. Phys. Rev. 95: 1300.ADSCrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    Gertsenshtein, M.E. 1962. Sov. Phys. J. Exp. Theor. Phys. 14: 84.Google Scholar
  34. 34.
    Gies, H. and J. Jaeckel. 2004. Phys. Rev. Lett. 93: 110405.ADSCrossRefGoogle Scholar
  35. 35.
    Gillies, G.T. 1997. Rep. Prog. Phys. 60: 151.ADSCrossRefGoogle Scholar
  36. 36.
    Göckeler, M., R. Horsley, V. Linke, P. Rakow, G. Schierholz and H. Stüben. 1997. Phys. Rev. Lett. 80: 4119.CrossRefGoogle Scholar
  37. 37.
    Gorishny, S.G., A.L. Kataev, S.A. Larin and L.R. Surguladze. 1991. Phys. Lett. B 256: 81.ADSCrossRefGoogle Scholar
  38. 38.
    Guida, R. and J. Zinn-Justin. 1998. J. Phys. A 31: 8103.ADSCrossRefMathSciNetMATHGoogle Scholar
  39. 39.
    Hua, L.K. 1963. In American Mathematical Society Translations (American Mathematical Society, Providence, R.I.), Vol. 6, pp. 6–8, pp. 48, 97, and Vol. 32, p. 195, Eqs. (11) and (65), and p. 217.Google Scholar
  40. 40.
    Infeld, L. 1936. Nature 137: 658.ADSCrossRefMATHGoogle Scholar
  41. 41.
    Itzykson, C. and J.B. Zuber. 1980. Quantum Field Theory (McGraw-Hill, New York).Google Scholar
  42. 42.
    Jakovac, A. and P. Mati. 2012. Phys. Rev. D 85: 085006.ADSCrossRefGoogle Scholar
  43. 43.
    Jakovac, A. and P. Mati. 2013. Phys. Rev. D 87: 125007.ADSCrossRefGoogle Scholar
  44. 44.
    Jakovac, A. and P. Mati. 2014. Phys. Rev. D 90: 045038.ADSCrossRefGoogle Scholar
  45. 45.
    Jentschura, U.D. 2011. Ann. Phys. (N.Y.) 326: 516.ADSCrossRefMathSciNetMATHGoogle Scholar
  46. 46.
    Jentschura, U.D. 2013. Phys. Rev. A 87: 032101, [Erratum Phys. Rev. A 87, 069903(E) (2013)].ADSCrossRefGoogle Scholar
  47. 47.
    Jentschura, U.D. 2014a. Phys. Rev. A 90: 022112.ADSCrossRefGoogle Scholar
  48. 48.
    Jentschura, U.D. 2014b. Ann. Phys. (Berlin) 526: A47.ADSCrossRefMATHGoogle Scholar
  49. 49.
    Jentschura, U.D. and J.H. Noble. 2013. Phys. Rev. A 88: 022121.ADSCrossRefGoogle Scholar
  50. 50.
    Jentschura, U.D. and J.H. Noble. 2014. J. Phys. A 47: 045402.ADSCrossRefMathSciNetGoogle Scholar
  51. 51.
    Kaluza, T. 1921. Preussische Akademie der Wissenschaften (Berlin), Sitzungsberichte, 966–972.Google Scholar
  52. 52.
    Kawai, H., D.C. Lewellen and S.-H.H. Tye. 1986. Nucl. Phys. B 269: 1.ADSCrossRefMathSciNetGoogle Scholar
  53. 53.
    Kim, S., J.B. Kogut and M.-P. Lombardo. 2002. Phys. Rev. D 65: 054015.ADSCrossRefGoogle Scholar
  54. 54.
    Klein, O. 1926. Z. Phys. A 37: 895.CrossRefMATHGoogle Scholar
  55. 55.
    Landau, L.D. 1955. Niels Bohr and the Development of Physics, edited by W. Pauli (McGraw-Hill, New York), p. 52.Google Scholar
  56. 56.
    Landau, L.D., A.A. Abrikosov and I.M. Khalatnikov. 1954. Dokl. Akad. Nauk SSSR 95: 1177.Google Scholar
  57. 57.
    Manoukian, E.B. 1984. Fortschr. Physik 32: 315.ADSCrossRefMathSciNetGoogle Scholar
  58. 58.
    Mohr, P.J. 2014. Private communication.Google Scholar
  59. 59.
    Mohr, P.J., B.N. Taylor and D.B. Newell. 2012. Rev. Mod. Phys. 84: 1527.ADSCrossRefGoogle Scholar
  60. 60.
    Murphy, M.T., J.K. Webb and V.V. Flambaum. 2003. Mon. Not. Roy. Astron. Soc. 345: 609.ADSCrossRefGoogle Scholar
  61. 61.
    Onofrio, R. 2013a. Mod. Phys. Lett. A 28: 1350022.ADSCrossRefGoogle Scholar
  62. 62.
    Onofrio, R. 2013b. Europhys. Lett. 104: 20002.ADSCrossRefGoogle Scholar
  63. 63.
    Overduin, J.M. and P.S. Wesson. 1997. Phys. Rep. 283: 303.ADSCrossRefMathSciNetGoogle Scholar
  64. 64.
    Pease, R.L. 1977. Int. J. Theor. Phys. 16: 405.CrossRefGoogle Scholar
  65. 65.
    Pohl, R., A. Antognini, F. Nez, F.D. Amaro, F. Biraben, J.M.R. Cardoso, D.S. Covita, A. Dax, S. Dhawan, L.M.P. Fernandes, A. Giesen, T. Graf, et al. 2010. Nature 466: 213.ADSCrossRefGoogle Scholar
  66. 66.
    Polchinski, J. 1998a. String Theory (Volume 1): An Introduction to the Bosonic String (Cambridge University Press, Cambridge, UK).Google Scholar
  67. 67.
    Polchinski, J. 1998b. String Theory (Volume 2): Superstring Theory and Beyond (Cambridge University Press, Cambridge, UK).Google Scholar
  68. 68.
    de Rafael, E. and J.L. Rosner. 1974. Ann. Phys. 82: 369.ADSCrossRefMathSciNetGoogle Scholar
  69. 69.
    Raffelt, G. and L. Stodolsky. 1988. Phys. Rev. D 37: 1237.ADSCrossRefGoogle Scholar
  70. 70.
    Robertson, B. 1971. Phys. Rev. Lett. 27: 1545.ADSCrossRefGoogle Scholar
  71. 71.
    Robinson, S.P. and F. Wilczek. 2006. Phys. Rev. Lett. 96: 231601.ADSCrossRefGoogle Scholar
  72. 72.
    Rosen, G. 1976. Phys. Rev. D 13: 830.ADSCrossRefGoogle Scholar
  73. 73.
    Sakharov, A.D. 2000. Gen. Relativ. Gravit. 32: 365.ADSCrossRefMathSciNetMATHGoogle Scholar
  74. 74.
    Schönfeldt, E. and P. Wilde. 2012. Progress in Physics 1: 3.Google Scholar
  75. 75.
    Suslov, I.M. 2001. Pis’ma v ZhETF 74: 211, [J. Exp. Theor. Phys. Lett. 74, 191 (2001)].Google Scholar
  76. 76.
    Suslov, I.M. 2009. Zh. Éksp. Teor. Fiz. 135: 1129, [J. Exp. Theor. Phys. 108, 980 (2009)].Google Scholar
  77. 77.
    Symanzik, K. 1970. Commun. Math. Phys. 18: 227.ADSCrossRefMathSciNetMATHGoogle Scholar
  78. 78.
    Terazawa, H., K. Akama and Y. Chikashige. 1976. Prog. Theor. Phys. (Kyoto) 56: 1935.ADSCrossRefGoogle Scholar
  79. 79.
    Terazawa, H., Y. Chikashige, K. Akama and T. Matsuki. 1977. Phys. Rev. D 15: 1181.ADSCrossRefGoogle Scholar
  80. 80.
    Visser, M. 2002. Mod. Phys. Lett. A 17: 977.ADSCrossRefMathSciNetMATHGoogle Scholar
  81. 81.
    Webb, J.K., V.V. Flambaum, C.W. Churchill, M.J. Drinkwater and J.D. Barrow. 1999. Phys. Rev. Lett. 82: 884.ADSCrossRefGoogle Scholar
  82. 82.
    Webb, J.K., J.A. King, M.T. Murphy, V.V. Flambaum, R.F. Carswell and M.B. Bainbridge. 2011. Phys. Rev. Lett. 107: 191101.ADSCrossRefGoogle Scholar
  83. 83.
    Webb, J.K., M.T. Murphy, V.V. Flambaum, V.A. Dzuba, J.D. Barrow, C.W. Churchill, J.X. Prochaska and A.M. Wolfe. 2001. Phys. Rev. Lett. 87: 091301.ADSCrossRefGoogle Scholar
  84. 84.
    Weyl, H. 1919. Ann. Phys. (Berlin) 364: 101.ADSCrossRefGoogle Scholar
  85. 85.
    Wyler, A. 1969. C. R. Acad. Sci. Paris Ser. A–B 269: A743.MathSciNetGoogle Scholar
  86. 86.
    Wyler, A. 1971. C. R. Acad. Sci. Paris Ser. A 271: 186.Google Scholar
  87. 87.
    Zeldovich, Y.B. and I.D. Novikov. 1983. The structure and evolution of the universe, Rel. Astrophys. Vol. 2 (Chicago University Press).Google Scholar
  88. 88.
    Zinn-Justin, J. 2002. Quantum Field Theory and Critical Phenomena (Oxford University Press, Oxford), 4th edition.Google Scholar
  89. 89.
    Zinn-Justin, J. 2007. Phase Transitions and Renormalisation Group (Oxford University Press, New York).Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsMissouri University of Science and TechnologyRollaUSA
  2. 2.MTA–DE Particle Physics Research GroupDebrecenHungary

Personalised recommendations