Advertisement

The European Physical Journal H

, Volume 40, Issue 1, pp 1–52 | Cite as

The story of the Higgs boson: the origin of mass in early particle physics

  • Arianna BorrelliEmail author
Article

Keywords

Higgs Boson Nobel Prize Spontaneous Symmetry Breaking Physical Review Letter Local Gauge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Álvarez-Gaumé, L. and J. Ellis. 2011. Eyes on a Prize Particle. Nature Physics 7: 2–3 CrossRefADSGoogle Scholar
  2. 2.
    Anderson, C.D. 1932. The Apparent Existence of Easily Deflectable Positives. Science 76: 238–239 CrossRefADSGoogle Scholar
  3. 3.
    Anderson, C.D. 1933. The Positive Electron. Physical Review 43: 491–494 CrossRefADSGoogle Scholar
  4. 4.
    Anderson, P.W. 1963. Plasmons, gauge invariance, and mass. Physical Review 130: 439–442 CrossRefADSzbMATHGoogle Scholar
  5. 5.
    Arnowitt, R. and P. Deser. 1965. Spontaneous symmetry breakdown and the μ-e-γ interaction. Physical Review B 138: 717–723 CrossRefMathSciNetGoogle Scholar
  6. 6.
    Baker, M. and S. Glashow. 1962. Spontaneous breakdown of elementary particle symmetries. Physical Review 128: 2462–2471CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bludman, S. 1958. On the universal Fermi interaction. Nuovo Cimento 9: 433–444 CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bogoliubov, N. 1958. A new method in the theory of superconductivity. London: Chapman & HallGoogle Scholar
  9. 9.
    Borrelli, A. 2009. The emergence of selection rules and their encounter with group theory: 1913–1927. Studies in the history and philosophy of modern physics 40: 327–337 CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Borrelli, A. 2012. The case of the composite Higgs: the model as a ‘Rosetta stone’ in contemporary high-energy physics. Studies in the history and philosophy of modern physics 43: 195–214 CrossRefzbMATHGoogle Scholar
  11. 11.
    Borrelli, A. 2014. The making of an intrinsic property: ‘symmetry heuristics’ in early particle physics, to appear in: Studies in the history and philosophy of science, special Issue on Integrated History and Philosophy of Science. DOI: 10.1016/j.shpsa.2014.09.009
  12. 12.
    Brout, R. 1967. Group theory of the possible spontaneous breakdown of SU(3). Nuovo Cimento 47: 932–934 CrossRefADSGoogle Scholar
  13. 13.
    Brown, L. and L. Hoddeson. 1983. The birth of elementary particle physics: 1930–1950. In: The birth of particle physics, L. Brown and L. Hoddeson (eds.). Cambridge: Cambridge University Press, pp. 3–36Google Scholar
  14. 14.
    Brown, L., M. Dresden and L. Hoddeson. 1989. Pions to quarks: particle physics in the 1950s. In: Pions to quarks: particle physics in the 1950s, L. Brown, M. Dresden and L. Hoddeson (eds.). Cambridge: Cambridge University Press, pp. 3–39Google Scholar
  15. 15.
    Brown, L. and T.Y. Cao. 1991. Spontaneous breakdown of symmetry: Its rediscovery and integration into quantum field theory. Historical studies in the physical and biological sciences 21: 211–235 CrossRefGoogle Scholar
  16. 16.
    Brown, L.M., R. Brout, T.Y. Cao, P. Higgs and Y. Nambu. 1997. Panel session: spontaneous breaking of symmetry. In: The rise of the Standard Model, L. Hoddeson et al. (eds.). Cambridge: Cambridge University Press, pp. 478–522Google Scholar
  17. 17.
    Butterworth, J. 2013. Nobel prize: well done Higgs theorists but what about the experimenters? The Guardian, October 8th 2013, http://www.theguardian.com/science/life-and-physics/2013/oct/08/nobel-higgs-boson-experimenters, last accessed September 23rd 2014
  18. 18.
    Byrne, N., C. Iiddings and E. Schrauener. 1965. Meson states in a nonlinear spinor model of elementary-particle theory with spontaneous symmetry breakdown. Physical Review B 139: 933–944 CrossRefADSGoogle Scholar
  19. 19.
    Carroll, S. 2012. The particle at the end of the universe. London: Oneworld PublicationsGoogle Scholar
  20. 20.
    Carroll, S. 2013. The Nobel prize is really annoying. Entry in Carroll’s blog The preposterous universe. http://www.preposterousuniverse.com/blog/2013/10/07/the-nobel-prize-is-really-annoying/, last accessed September 21st 2014
  21. 21.
    CERN press release July 4th 2012. CERN experiments observe particle consistent with long-sought Higgs boson, http://press.web.cern.ch/press-releases/2012/07/cern-experiments-observe-particle-consistent-long-sought-higgs-boson, last accessed April 1st 2014
  22. 22.
    CERN press release Mar 14th 2013. New results indicate that particle discovered at CERN is a Higgs boson, http://press.web.cern.ch/press-releases/2013/03/new-results-indicate-particle-discovered-cern-higgs-boson, last accessed on April 1st 2014
  23. 23.
    Chew, G. 1989. Particles as S-matrix poles: hadron democracy. In: Pions to quarks: particle physics in the 1950s, L. Brown, M. Dresden and L. Hoddeson (eds.). Cambridge: Cambridge University Press, pp. 600–607 Google Scholar
  24. 24.
    Chew, G., M.L. Goldberger, F.E. Low and Y. Nambu. 1957. Relativistic Dispersion Relation Approach to Photomeson Production, Physical Review 106: 1345–55 CrossRefADSzbMATHMathSciNetGoogle Scholar
  25. 25.
    Chew, G., M.L. Goldberger, F.E. Low and Y. Nambu. 1957. Application of Dispersion Relations to Low-Energy Meson-Nucleon Scattering. Physical Review 106: 1337–4 CrossRefADSzbMATHMathSciNetGoogle Scholar
  26. 26.
    Close, F. 2010. How the Boson Got Higgs’s Name. Nature 465: 873–74 CrossRefADSGoogle Scholar
  27. 27.
    Close, F. 2011. The infinity puzzle. Oxford: Oxford University PressGoogle Scholar
  28. 28.
    Close, F. 2014. Tom Kibble at 80: after dinner speech. In: Symmetry and fundamental physics: Tom Kibble at 80, J. Gauntlett (ed.). Singapore: World Scientific Publishing, pp. 133–135Google Scholar
  29. 29.
    Conversi, M., E. Pancini and O. Piccioni. 1947. On the Disintegration of Negative Mesons. Physical Review 71: 209–210 CrossRefADSGoogle Scholar
  30. 30.
    Domokos, G. and P. Suranyi. 1965. [Spontaneous symmetry breaking in quantum field theory (in Russian)]. Journal of nuclear physics (U.S.S.R.) 2: 501–511 (English translation: Soviet journal of nuclear physics 2: 361–367)MathSciNetGoogle Scholar
  31. 31.
    Dürr, H.-P., W. Heisenberg, H. Mitter, S. Schlieder and K. Yamazaki. 1959. Zur Theorie der Elementarteilchen. Zeitschrift für Naturforschung 14a: 441–485 ADSGoogle Scholar
  32. 32.
    Dürr, H.-P. 1968. Goldstone theorem and possible applications to elementary particle physics. Discussion. In: Fundamental problems in elementary physics. London: Interscience publishers, pp. 1–21 Google Scholar
  33. 33.
    Dürr, H.-P. 1993. Unified field theory of elementary particles I, II. In: W. Heisenberg, Collected works.W. Blum et al. (eds.). Berlin: Springer, pp. 133–140 and 325–334Google Scholar
  34. 34.
    Ellis, J., D. Nanopoulus and M. Gaillard. 1976. A phenomenological profile of the Higgs boson. Nuclear Physics B 106: 292–340 CrossRefADSGoogle Scholar
  35. 35.
    Ellis, J., D. Nanopoulus and M. Gaillard. 2012. A historical profile of the Higgs boson. arXiv:1201.6045 [hep-ph] last accessed on September 21st 2014Google Scholar
  36. 36.
    Englert, F. 2014. Nobel Lecture: The BEH Mechanism and Its Scalar Boson. Review of Modern Physics 86: 843–50 CrossRefADSGoogle Scholar
  37. 37.
    Englert, F. and R. Brout. 1964. Broken symmetry and the mass of gauge vector mesons. Physical Review Letters 13: 321–323 CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Englert, F., R. Brout and M.F. Thiry. 1966. Vector mesons in presence of broken symmetry. Nuovo Cimento 43: 244–257 CrossRefADSGoogle Scholar
  39. 39.
    European Physical Society. 1997. High energy and Particle Division of the European Physical Society. Prize 1997, http://eps-hepp.web.cern.ch/eps-hepp/hepp-prize-awards.php. lst accessed September 21st 2014
  40. 40.
    Feynman, R. and M. Gell-Mann. 1958. Theory of the Fermi Interaction. Physical Review 109: 193–98 CrossRefADSzbMATHMathSciNetGoogle Scholar
  41. 41.
    Fraser, G. 2008. Cosmic anger. Abdus salam – The first Muslim Nobel scientist. Oxford: Oxford University Press Google Scholar
  42. 42.
    Friedman, J.I. and V.L. Telegdi. 1957. Nuclear Emulsion Evidence for Parity Nonconservation in the Decay Chain π+-μ+-e+. Physical Review 105: 1681–1682 CrossRefADSGoogle Scholar
  43. 43.
    Garwin, R.L., L.M. Lederman and M. Weinrich. 1957. Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon. Physical Review 105: 1415–1417 CrossRefADSGoogle Scholar
  44. 44.
    Gauntlett, J. (ed.) 2014. Symmetry and fundamental physics: Tom Kibble at 80. Singapore: World Scientific Publishing Google Scholar
  45. 45.
    Gell-Mann, M. and M. Lévy. 1960. The axial vector current in beta decay. Nuovo Cimento 16: 705–726 CrossRefzbMATHGoogle Scholar
  46. 46.
    Glashow, S. 1961. Partial symmetries of weak interactions. Nuclear Physics 22: 579–588.CrossRefADSGoogle Scholar
  47. 47.
    Glashow, S. 1963. Spontaneous breakdown of octet symmetry. Physical Review 130: 2132–2134. CrossRefADSzbMATHMathSciNetGoogle Scholar
  48. 48.
    Goldberger, M.L., and S.B. Treiman. 1958a. Decay of the Pi meson. Physical Review 110: 1178–1184 CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Goldberger, M.L., and S.B. Treiman. 1958b. Form factors in β decay and μ capture. Physical Review 111: 354–61 CrossRefADSzbMATHGoogle Scholar
  50. 50.
    Goldstone, J. 1957. Derivation of the Brueckner Many-Body Theory. 1957. In: Proceedings of the Royal Society of London Series A. Mathematical and physical sciences 239: 267–279Google Scholar
  51. 51.
    Goldstone, J. 1961. Field theories with “superconductor” solutions. Nuovo Cimento 19: 154–164.CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Goldstone, J., A. Salam and S. Weinberg. 1962. Broken symmetries. Physical Review 127: 965−970.CrossRefADSzbMATHMathSciNetGoogle Scholar
  53. 53.
    Guralnik G.S. 2009. The history of the Guralnik, Hagen and Kibble development of the theory of spontaneous symmetry breaking and gauge particles. International Journal of Modern Physics A 24: 2601–2627 CrossRefADSzbMATHGoogle Scholar
  54. 54.
    Guralnik, G.S. 2011. The Beginnings of Spontaneous Symmetry Breaking in Particle Physics – Derived From My on the Spot “Intellectual Battlefield Impressions”, arXiv:1110.2253 [physics.hist-ph], last accessed 15 August 2014Google Scholar
  55. 55.
    Guralnik, G.S., C.R. Hagen and T.W.B. Kibble. 1964. Global conservation laws and massless particles. Physical Review Letters 13: 585−587 CrossRefADSGoogle Scholar
  56. 56.
    Heisenberg, W. 1957. Quantum theory of fields and elementary particles. Review of Modern Physics 29: 269−278CrossRefADSzbMATHMathSciNetGoogle Scholar
  57. 57.
    Hendry, J. 1980. The development of attitudes to the wave-particle duality of light and quantum theory, 1900–1920. Annals of Science 37: 59−79CrossRefMathSciNetGoogle Scholar
  58. 58.
    Higgs, P.W. 1964a. Broken symmetries, massless particles and gauge fields. Physics Letters 12: 132−133CrossRefADSGoogle Scholar
  59. 59.
    Higgs, P.W. 1964b. Broken symmetries and the masses of gauge bosons. Physical Review Letters 16: 508−509CrossRefADSMathSciNetGoogle Scholar
  60. 60.
    Higgs, P.W. 1966. Spontaneous symmetry breakdown without massless bosons. Physical Review 145: 1156−1163CrossRefADSMathSciNetGoogle Scholar
  61. 61.
    Higgs, P. 2014. Nobel Lecture: Evading the Goldstone theorem. Reviews of Modern Physics 86: 851–53 CrossRefADSGoogle Scholar
  62. 62.
    Higgs mechanism: Revision history. 2004−2014. Wikipedia. http://en.wikipedia.org/w/index.php?title=Higgs_mechanism&action=history, last accessed September 20th 2014
  63. 63.
    Hoddeson, L., H. Schubert, S.J. Heims and G. Baym. 1992. Collective phenomena. In: Out of the crystal maze, L. Hoddeson et al. (eds.). Oxford: Oxford University Press, pp. 489–616.Google Scholar
  64. 64.
    Itzykson C. and J.B. Zuber. 1980. Quantum field theory. New York: McGraw-Hill.Google Scholar
  65. 65.
    Kaiser, D. 2005. Drawing theories apart. Chicago: University of Chicago PressGoogle Scholar
  66. 66.
    Karaca, K. 2013. The construction of the Higgs mechanism and the emergence of the electroweak theory. Studies in History and Philosophy of Modern Physics 44: 1−16CrossRefzbMATHMathSciNetGoogle Scholar
  67. 67.
    Kibble, T. 2009a. Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism, Scholarpedia 4: 6441, DOI: 10.4249/scholarpedia.6441 last accessed on September 23rd 2014CrossRefADSGoogle Scholar
  68. 68.
    Kibble, T. 2009b. Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism (history), Scholarpedia 4: 8741, DOI: 10.4249/scholarpedia.8741 last accessed on September 23rd 2014
  69. 69.
    Lee, T.D. and C.N. Yang. 1956. Question of Parity Conservation in Weak Interactions. Physical Review 104: 254–258 CrossRefADSGoogle Scholar
  70. 70.
    Lee, B. 1966. Renormalization of the σ-model. Nuclear Physics B 9: 649–672 CrossRefADSGoogle Scholar
  71. 71.
    Marschak, R.E. 1989. Scientific impact of the Rochester conferences (1950-1960), In: Pions to quarks: particle physics in the 1950s, L. Brown, M. Dresden and L. Hoddeson (eds.). Cambridge: Cambridge University Press, pp. 645–667Google Scholar
  72. 72.
    Marx, G. 1965. Decay KL → 2π and spontaneous breakdown of CP symmetry. Physical Review Letters 14: 334–336 CrossRefADSMathSciNetGoogle Scholar
  73. 73.
    Mehra J. and K.A. Milton. 2000. Climbing the mountain: the scientific biography of Julian Schwinger. Oxford: Oxford University PressGoogle Scholar
  74. 74.
    Merali, Z. 2010. Physicists get political over Higgs Nature News 4 August 2010, DOI: 10.1038/news.2010.390 last accessed September 18th 2014
  75. 75.
    Monaldi, D. 2005. Life of μ: The Observation of the Spontaneous decay of Mesotrons and its Consequences, 1938–1947. Annals of Science 62: 4194–4255 CrossRefGoogle Scholar
  76. 76.
    Nambu, Y. 1960a. Quasi-particles and gauge invariance in the theory of superconductivity. Physical Review 117: 648–663. CrossRefADSMathSciNetGoogle Scholar
  77. 77.
    Nambu, Y. 1960b. Axial vector current conservation in weak interactions. Physical Review Letters 4: 380–382 CrossRefADSGoogle Scholar
  78. 78.
    Nambu, Y. and G. Jona-Lasinio. 1961. Dynamical model of elementary particles based on an analogy with superconductivity I. Physical Review 122: 345–358 CrossRefADSGoogle Scholar
  79. 79.
    Nature Editorial. 2012. Mass Appeal. Nature 483: 374–374 Google Scholar
  80. 80.
    Neddermeyer, Seth H. and Carl D. Anderson. 1957. Note on the Nature of Cosmic-Ray Particles. Physical Review 51: 884–886 CrossRefADSGoogle Scholar
  81. 81.
    Nishina, Y., M. Takeuchi and T. Ichimiya. 1937. On the Nature of Cosmic-Ray Particles. Physical Review 52: 1198–99 CrossRefADSGoogle Scholar
  82. 82.
    Nobel prize. 1979. http://www.nobelprize.org/nobel_prizes/physics/laureates/1979/, last accessed August 20th 2014
  83. 83.
    Nobel prize. 1999. http://www.nobelprize.org/nobel_prizes/physics/laureates/1999/, last accessed August 20th 2014
  84. 84.
    Nobel prize. 2013. http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/, last accessed on August 20th 2014
  85. 85.
    OED. 1989. Entry Bootstrap. In: Oxford English Dictionary. Second Edition. Online version June 2012, http://www.oed.com/view/Entry/21553, last accessed August 27th 2012
  86. 86.
    Pais, A. 1986. Inward bound. Of matter and forces in the physical world. Oxford: Oxford University PressGoogle Scholar
  87. 87.
    Peskin, M.E. and D.V. Schroeder. 1995. An introduction to quantum field theory. Boulder: WestviewGoogle Scholar
  88. 88.
    Pickering, A. 1984. Constructing quarks. A sociological history of particle physics. Chicago: University of Chicago Press Google Scholar
  89. 89.
    Polkinghorne, J. 1958a. Renormalization of axial vector coupling. Nuovo Cimento 8: 170–180 CrossRefMathSciNetGoogle Scholar
  90. 90.
    Polkinghorne, J. 1958b. Renormalization of axial vector coupling II. Nuovo Cimento 8: 781 CrossRefMathSciNetGoogle Scholar
  91. 91.
    Polkinghorne, J.C. 1989. Rochester roundabout: the story of high energy physics. Harlow: LongmanGoogle Scholar
  92. 92.
    Pontecorvo, B.M. 1989. Recollections on the establishment of the weak interaction notion. In: Pions to quarks: particle physics in the 1950s, L. Brown, M. Dresden and L. Hoddeson (eds.). Cambridge: Cambridge University Press, pp. 367–372Google Scholar
  93. 93.
    Rechenberg, H. 1989. The early S-matrix theory and its propagation (1942–1952). In: Pions to quarks: particle physics in the 1950s, Brown L., M. Dresden and L. Hoddeson (eds.). Cambridge: Cambridge University Press, pp. 551–578Google Scholar
  94. 94.
    Royal Swedish Academy, Class of Physics 2013. The BEH-mechanism, interactions with short-range forces and scalar particles, Advanced information about the Physics Nobel prize 2013, http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/advanced.html, last accessed on September 23rd 2014
  95. 95.
    Salam, A. 1961. Some speculations on the new resonances. Review of modern physics 33: 426-430CrossRefADSMathSciNetGoogle Scholar
  96. 96.
    Salam, A. 1968. Weak and electromagnetic interactions. In: Elementary particle theory, N. Svartholm (ed.). Stockholm: Almqvist and Wiskell. pp. 367–377Google Scholar
  97. 97.
    Salam, A. 1979. Gauge unification of fundamental forces. In: Nobel Lectures. Physics 1971–1980, S. Lundqvist (ed.). Singapore: World Scientific Publishing Co. 1992, http://www.nobelprize.org/nobel_prizes/physics/laureates/1979/salam-lecture.html, last accessed August 28th 2014
  98. 98.
    Salam, A. and J.C. Ward. 1959. Weak and electromagnetic interactions. Nuovo Cimento 11: 568–577 CrossRefzbMATHMathSciNetGoogle Scholar
  99. 99.
    Salam, A. and J.C. Ward. 1960. ΔI = 1 / 2 rule. Physical Review Letters 5: 390 CrossRefADSGoogle Scholar
  100. 100.
    Salam, A. and J.C. Ward. 1961. On a gauge theory of elementary interactions. Nuovo Cimento 19: 165–170 CrossRefzbMATHMathSciNetGoogle Scholar
  101. 101.
    Sakurai, J. 1958. Mass Reversal and Weak Interactions, Nuovo Cimento (1955–1965) 7: 649–660 CrossRefGoogle Scholar
  102. 102.
    Sakurai Prize. 2010. http://www.aps.org/programs/honors/prizes/sakurai.cfm, last accessed on April 10th 2014
  103. 103.
    Sample, I. 2010a. Massive. The missing particle that sparked the greatest hunt in science. New York: Basic Books Google Scholar
  104. 104.
    Sample, I. 2010b. The Long Story of How the Boson Got Only Higgs’s Name. Nature 466: 689–689 CrossRefADSGoogle Scholar
  105. 105.
    Sanyuk, V.I. 1992. Genesis and evolution of the Skyrme model from 1954 to the present. International Journal of Modern Physics A7: 1–40, reprinted in: T. Skyrme, Selected papers, with commentary, of Tony Hilton Royle Skyrme. G.E. Brown (ed.). Singapore: World Scientific, 1994, pp. 126–165CrossRefADSMathSciNetGoogle Scholar
  106. 106.
    Schweber, S.S. 1994. QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga. Princeton: Princeton University PressGoogle Scholar
  107. 107.
    Schwinger, J. 1957. A theory of the fundametal interaction. Annals of Physics 2: 407–434 CrossRefADSzbMATHMathSciNetGoogle Scholar
  108. 108.
    Schwinger, J. 1962a. Gauge invariance and mass. Physical Review 125: 397–398 CrossRefADSzbMATHMathSciNetGoogle Scholar
  109. 109.
    Schwinger, J. 1962b. Gauge invariance and mass II. Physical Review 128: 2425–2429 CrossRefADSzbMATHMathSciNetGoogle Scholar
  110. 110.
    Shaw, R. 1955. The problem of particle types and other contributions to the theory of elementary particles. PhD thesis, Cambridge University, unpublishedGoogle Scholar
  111. 111.
    Skyrme, T.H.R. 1958. A non-linear theory of strong interactions. In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 247: 260–278Google Scholar
  112. 112.
    Skyrme, T.H.R. 1959. A unified model of K- and π-mesons. In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 252: 236–245Google Scholar
  113. 113.
    Skyrme, T.H.R. 1988. The origin of skyrmions. International Journal of Modern Physics A3: 2745–2751, reprinted in: T. Skyrme, Selected papers, with commentary, of Tony Hilton Royle Skyrme. G.E. Brown (ed.). Singapore: World Scientific 1994, pp. 116–125CrossRefADSMathSciNetGoogle Scholar
  114. 114.
    Strocchi, F. 2008. Symmetry breaking. Berlin: SpringerGoogle Scholar
  115. 115.
    Streater, R.F. 1965. Spontaneous breakdown of symmetry in axiomatic theory. In: Proceedings of the Royals Society of London. Series A. Mathematical and Physical Sciences 287: 510–518Google Scholar
  116. 116.
    Street, J.C. and E.C. Stevenson. 1937. New Evidence for the Existence of a Particle of Mass Intermediate Between the Proton and Electron. Physical Review 52: 1003–1004 CrossRefADSGoogle Scholar
  117. 117.
    Sudarshan, E.C.G. and R. Marshak. 1958. The Nature of the Four-Fermion Interaction. In: Proceedings of the Conference on Mesons and newly-discovered particles. Bologna: Zanichelli, reprinted in A Gift of Prophecy, E.C.G. Sudarshan (ed.). Singapore: World Scientific, pp. 508–515Google Scholar
  118. 118.
    Suzuki, M. 1963. Foundation of spontaneous breakdown of symmetry. Progress in Theoretical Physics 30: 627–635 CrossRefADSGoogle Scholar
  119. 119.
    ’t Hooft, G. 1997. Renormalization of gauge theories. In: The rise of the Standard Model, L. Hoddeson et al. (eds.). Cambridge: Cambridge University Press, pp. 179–198Google Scholar
  120. 120.
    ’t Hooft, G. and M. Veltman. 1972. Regularization and renormalization of gauge fields. Nuclear Physics B 44: 189–213 CrossRefADSMathSciNetGoogle Scholar
  121. 121.
    Talk: 1964. PRL symmetry breaking papers. 2009. Wikipedia. http://en.wikipedia.org/wiki/Talk–%"3A1964_PRL_symmetry_breaking_papers, last accessed on September 21st 2014
  122. 122.
    Treiman, S. 1989. A connection between the strong and weak interactions. In: L. Brown, M. Dresden and L. Hoddeson (eds.), Pions to quarks: particle physics in the 1950s. Cambridge: Cambridge University Press, pp. 384–389Google Scholar
  123. 123.
    Weinberg, S. 1967. A model of leptons. Physical Review Letters 19: 1264–1266 CrossRefADSGoogle Scholar
  124. 124.
    Weinberg, S. 1979. Conceptual Foundations of the Unified Theory of Weak and Electromagnetic Interactions. In: Nobel Lectures. Physics 1971–1980, S. Lundqvist (ed.). Singapore: World Scientific Publishing Co. 1992, http://www.nobelprize.org/nobel_prizes/physics/laureates/1979/weinberg-lecture.html, last accessed August 28th 2014
  125. 125.
    Weinberg, S. 2014. Tom Kibble: Breaking ground and breaking symmetries. In: Symmetry and fundamental physics: Tom Kibble at 80, J. Gauntlett (ed.). Singapore: World Scientific Publishing, pp. 125–131 Google Scholar
  126. 126.
    Wentzel, G. 1956. [untitled]. In: High energy nuclear physics. Proceedings of the sixth annual Rochester conference, J. Ballam et al. (eds.). New York: Interscience, pp. VIII-15–VIII-17Google Scholar
  127. 127.
    Woit, P. 2010. The Anderson-Higgs mechanism. Entry and comments in Woit’s blog Not even wrong. http://www.math.columbia.edu/~woit/wordpress/?p=3282 last accessed September 21st 2014
  128. 128.
    Woit, P. 2013. Nobel for Englert and Higgs. Entry and comments in Woit’s blog Not even wrong. http://www.math.columbia.edu/~woit/wordpress/?p=3282 last accessed September 21st 2014
  129. 129.
  130. 130.
    Wu C.S., E. Ambler, R.W. Hayward, D.D. Hoppes and R.P. Hudson. 1957. Experimental Test of Parity Conservation in Beta Decay. Physical Review 105: 1413–15 CrossRefADSGoogle Scholar
  131. 131.
    Yang, C.L. and R.L. Mills. 1954. Conservation of isotopic spin and isotopic gauge invariance. Physical Review 96: 191–195 CrossRefADSMathSciNetGoogle Scholar
  132. 132.
    Yukawa, H. 1935. Interaction of Elementary Particles. I. In: Proceedings of the Physico-Mathematical Society of Japan 17: 48–57Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute for Philosophy and History of Literature, Science and TechnologyTechnische Universität BerlinBerlinGemany

Personalised recommendations