The European Physical Journal H

, Volume 39, Issue 5, pp 543–574

From the necessary to the possible: the genesis of the spin-statistics theorem

Article
  • 190 Downloads

Abstract

The spin-statistics theorem, which relates the intrinsic angular momentum of a single particle to the type of quantum statistics obeyed by a system of many such particles, is one of the central theorems in quantum field theory and the physics of elementary particles. It was first formulated in 1939/40 by Wolfgang Pauli and his assistant Markus Fierz. This paper discusses the developments that led up to this first formulation, starting from early attempts in the late 1920s to explain why charged matter particles obey Fermi-Dirac statistics, while photons obey Bose-Einstein statistics. It is demonstrated how several important developments paved the way from such general philosophical musings to a general (and provable) theorem, most notably the use of quantum field theory, the discovery of new elementary particles, and the generalization of the notion of spin. It is also discussed how the attempts to prove a spin-statistics connection were driven by Pauli from formal to more physical arguments, culminating in Pauli’s 1940 proof. This proof was a major success for the beleaguered theory of quantum field theory and the methods Pauli employed proved essential for the renaissance of quantum field theory and the development of renormalization techniques in the late 1940s.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacciagaluppi, G. and A. Valentini. 2009. Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Belinfante, F.J. 1939. The undor equation of the meson field. Physica 6(9): 870-886ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bethe, H.A. and R.F. Bacher. 1936. Nuclear Physics A Stationary states of nuclei. Reviews of Modern Physics 8: 82-229ADSCrossRefGoogle Scholar
  4. 4.
    Bhabha, H. 1938. On the theory of heavy electrons and nuclear forces. Proceedings of the Royal Society, Series A 166: 501-528Google Scholar
  5. 5.
    Bose, S. 1924. Plancks Gesetz und Lichtquantenhypothese. Zeitschrift für Physik 26(1): 178-181ADSCrossRefMATHGoogle Scholar
  6. 6.
    Carson, C. 1996. The peculiar notion of exchange forces - II: From nuclear forces to QED, 1929–1950. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27(2): 99-131CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Cassidy, D.C. 1981. Cosmic ray showers, high energy physics, and quantum field theories: Programmatic interactions in the 1930s. Historical Studies in the Physical Sciences 12(1): 1-39CrossRefMathSciNetGoogle Scholar
  8. 8.
    Cini, M. 1982. Cultural Traditions and Enviromental Factors in the Development of Quantum Electrodynamics (1925–1933). Fundamenta Scientiae 3: 229-253Google Scholar
  9. 9.
    Darrigol, O. 1986. The origin of quantized matter waves. Historical Studies in the Physical and Biological Sciences 16: 197-253CrossRefGoogle Scholar
  10. 10.
    Darrigol, O. 1988. The quantum electrodynamical analogy in early nuclear theory or the roots of Yukawa’s theory. Revue d’histoire des sciences 41(3-4): 225-297CrossRefGoogle Scholar
  11. 11.
    Darwin, C. 1928. The wave equations of the electron. Proceedings of the Royal Society, Series A 118: 654-680Google Scholar
  12. 12.
    de Wet, J.S. 1940. On the connection between the spin and statistics of elementary particles. Physical Review 57: 646-652ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dirac, P. 1926. On the theory of quantum mechanics. Proceedings of the Royal Society, Series A 112: 661-677Google Scholar
  14. 14.
    Dirac, P. 1929. The basis of statistical quantum mechanics. Proceedings of the Cambridge Philosophical Society 25(1): 62-66ADSCrossRefMATHGoogle Scholar
  15. 15.
    Dirac, P.A.M. 1927. The quantum theory of emission and absorption of radiation. Proceedings of the Royal Society of London A 114: 243-265ADSCrossRefMATHGoogle Scholar
  16. 16.
    Dirac, P.A.M. 1930. A theory of electrons and protons. Proceedings of the Royal Society, Series A 126(801): 360-365Google Scholar
  17. 17.
    Dirac, P.A.M. 1931. Quantised singularities in the electromagnetic field. Proceedings of the Royal Society, Series A 133(821): 60-72Google Scholar
  18. 18.
    Dirac, P.A.M. 1932. Relativistic quantum mechanics. Proceedings of the Royal Society, Series A 136(829): 453-464Google Scholar
  19. 19.
    Dirac, P.A.M. 1936. Relativistic wave equations. Proceedings of the Royal Society, Series A 155(886): 447-459Google Scholar
  20. 20.
    dos Santos Fitas, A.J. and A.A.P. Videira. 2007. Guido Beck, Alexandre Proca, and the Oporto Theoretical Physics Seminar. Physics in Perspective 9(1): 4-25ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Duck, I. and E. Sudarshan. 1997. Pauli and the Spin-Statistics Theorem. World Scientific, SingaporeGoogle Scholar
  22. 22.
    Ehrenfest, P. 1932. Einige die Quantenmechanik betreffende Erkundigungsfragen. Zeitschrift für Physik 78: 555-559ADSCrossRefGoogle Scholar
  23. 23.
    Enz, C.P. 2002. No time to be brief - A scientific biography of Wolfgang Pauli. Oxford University Press, OxfordGoogle Scholar
  24. 24.
    Enz, C.P., B. Glaus and G. Oberkofler. 1997. Wolfgang Pauli und sein Wirken an der ETH Zürich. vdf, ZürichGoogle Scholar
  25. 25.
    Farmelo, G. 2009. The Strangest Man. Faber and Faber, LondonGoogle Scholar
  26. 26.
    Fermi, E. 1926. Sulla quantizzazione del gas perfetto monoatomico. Rendiconti dell’Accademia dei Lincei, 3 (145–149). Reprinted in Enrico Fermi, Collected Papers (Note e Memorie). Vol. 1. Italy, 1921–1938 (pp. 181–185), Edoardo Amaldi et al. (Eds.). Chicago: The University of Chicago Press, 1962Google Scholar
  27. 27.
    Fierz, M. 1939. Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin. Helvetica Physica Acta 12: 3-37CrossRefGoogle Scholar
  28. 28.
    Fierz, M. and W. Pauli. 1939. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proceedings of the Royal Society of London 173(953): 211-232ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    Fock, V. 1933. On the theory of the positron. Doklady Akademii Nauk N 6(265): 83-87Google Scholar
  30. 30.
    Franklin, A. 2005. The Konopinski-Uhlenbeck Theory of β Decay: Its Proposal and Refutation. In Buchwald, J. and Franklin, A. (Eds.), Wrong for the Right Reasons, pp. 209–228. Springer, DordrechtGoogle Scholar
  31. 31.
    Fröhlich, H. and W. Heitler. 1938. Magnetic moments of the proton and the neutron. Nature 141: 37-38ADSCrossRefGoogle Scholar
  32. 32.
    Furry, W.H. and J.R. Oppenheimer. 1934. On the theory of the electron and positive. Physical Review 45(4): 245-262ADSCrossRefGoogle Scholar
  33. 33.
    Gordon, W. 1926. Der Comptoneffekt nach der Schrödingerschen Theorie. Zeitschrift für Physik 40(1-2): 117-133ADSCrossRefMATHGoogle Scholar
  34. 34.
    Hayakawa, S. 1983. The development of meson physics in Japan. In Brown, L.M. and Hoddeson, L. (Eds.), The Birth of Particle Physics. Cambridge University Press, CambridgeGoogle Scholar
  35. 35.
    Heisenberg, W. 1934. Bemerkungen zur Diracschen Theorie des Positrons. Zeitschrift für Physik 90(3-4): 209-231ADSCrossRefGoogle Scholar
  36. 36.
    Heisenberg, W. and W. Pauli. 1929. Zur Quantendynamik der Wellenfelder. Zeitschrift für Physik 56: 1-61ADSCrossRefMATHGoogle Scholar
  37. 37.
    Hermann, A., K. von Meyenn and V.F. Weisskopf. 1979. Wolfgang Pauli: Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., volume I: 1919–1929. Springer, New YorkGoogle Scholar
  38. 38.
    Hermann, A., K. von Meyenn and V.F. Weisskopf. 1985. Wolfgang Pauli: Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., volume II: 1930–1939. Springer, New YorkGoogle Scholar
  39. 39.
    Jauch, J.M. 1938. Über die Energie-Impuls-Tensoren und die Stromvektoren in der Theorie von Dirac für Teilchen mit Spin grösser als 1/2 h. Helvetica Physica Acta 11(4): 374-377Google Scholar
  40. 40.
    Jordan, P. 1927. Zur Quantenmechnik der Gasentartung. Zeitschrift für Physik 44: 473-480ADSCrossRefMATHGoogle Scholar
  41. 41.
    Jordan, P. 1928. Die Lichtquantenhypothese: Entwicklung und gegenwärtiger Stand. Ergebnisse der exakten Naturwissenschaften 7: 158-208ADSCrossRefGoogle Scholar
  42. 42.
    Jordan, P. and W. Pauli. 1928. Zur Quantenelektrodynamik ladungsfreier Felder. Zeitschrift für Physik 47: 151-173ADSCrossRefMATHGoogle Scholar
  43. 43.
    Jordan, P. and E. Wigner. 1928. Zum Paulischen Äquivalenzverbot. Zeitschrift für Physik 47: 631-651ADSCrossRefMATHGoogle Scholar
  44. 44.
    Kemmer, N. 1938. Quantum theory of Einstein-Bose particles and nuclear interaction. Proceedings of the Royal Society, Series A 166: 127-153Google Scholar
  45. 45.
    Kemmer, N. 1983. Die Anfänge der Mesonentheorie und des verallgemeinerten Isospins. Physikalische Blätter 39(7): 170-175CrossRefGoogle Scholar
  46. 46.
    Kojevnikov, A. 2002. Dirac’s quantum electrodynamics. In Balashov, Y. and Vizgin, V., editors, Einstein Studies in Russia, volume 10 of Einstein Studies, pp. 229–259. Birkhäuser, BostonGoogle Scholar
  47. 47.
    Kragh, H. 1990. Dirac – A Scientific Biography. Cambridge University Press, CambridgeGoogle Scholar
  48. 48.
    Kramers, H.A. 1937. The use of charge-conjugated wave-functions in the hole-theory of the electron. Proceedings of the Royal Academy of Amsterdam 40: 814-823Google Scholar
  49. 49.
    Laporte, O. and G.E. Uhlenbeck. 1931. Application of spinor analysis to the Maxwell and Dirac equations. Physical Review 37: 1380-1397ADSCrossRefGoogle Scholar
  50. 50.
    Lee, S. 2007. Sir Rudolf Peierls: selected private and scientific correspondence, volume 1. World Scientific, New JerseyGoogle Scholar
  51. 51.
    Lehner, C. 2011. Mathematical foundations and physical visions: Pascual Jordan and the field theory program. In Schlote, K.-H. and Schneider, M. (Eds.), Mathematics Meets Physics: A contribution to their interaction in the 19th and the first half of the 20th century, pages 271–293. Harri Deutsch, Frankfurt/MainGoogle Scholar
  52. 52.
    Majorana, E. 1932. Teoria relativistica di particelle con momento intrinseco arbitrario. Il Nuovo Cimento 9: 335-344CrossRefGoogle Scholar
  53. 53.
    Massimi, M. 2005. Pauli’s Exclusion Principle. Cambridge University Press, CambridgeGoogle Scholar
  54. 54.
    Mehra, J. and H. Rechenberg. 2001. The Historical Development of Quantum Theory, volume 6–2. Springer, New YorkGoogle Scholar
  55. 55.
    Miller, A.I. 1994. Early Quantum Electrodynamics. Cambridge University Press, CambridgeGoogle Scholar
  56. 56.
    Oppenheimer, J. and R. Serber. 1937. Note on the nature of cosmic-ray particles. Physical Review 51: 1113ADSCrossRefGoogle Scholar
  57. 57.
    Pauli, W. 1921. Relativitätstheorie. Encyclopädie der mathematischen Wissenschaften 5(2)Google Scholar
  58. 58.
    Pauli, W. 1929. [Besprechung von] Ergebnisse der exakten Naturwissenschaften. Siebenter Band. Die Naturwissenschaften 17(16): 257-259ADSCrossRefGoogle Scholar
  59. 59.
    Pauli, W. 1933. Die allgemeinen Prinzipien der Wellenmechanik. Handbuch der Physik 24(1): 83-272MathSciNetGoogle Scholar
  60. 60.
    Pauli, W. 1935-1936c. The theory of the positron and related topics. Report of a Seminar (Notes by Dr. Banesh Hoffmann) at the IAS PrincetonGoogle Scholar
  61. 61.
    Pauli, W. 1936a. Raum, Zeit und Kausalität in der modernen Physik. Scientia 59: 65-76MATHGoogle Scholar
  62. 62.
    Pauli, W. 1936b. Théorie quantique relativiste des particules obéissant à la statistique de Einstein-Bose. Annales de l’Institut Henri Poincaré 6: 137-152MathSciNetGoogle Scholar
  63. 63.
    Pauli, W. 1940. The connection between spin and statistics. Physical Review 58: 716-722ADSCrossRefGoogle Scholar
  64. 64.
    Pauli, W. and F.J. Belinfante. 1940. On the statistical behaviour of known and unknown elementary particles. Physica 7(3): 177-192ADSCrossRefMathSciNetGoogle Scholar
  65. 65.
    Pauli, W. and V. Weisskopf. 1934. Über die Quantisierung der skalaren relativistischen Wellengleichung. Helvetica Physica Acta 7: 709-731Google Scholar
  66. 66.
    Proca, A. 1936. Sur la Théorie ondulatoire des électrons positifs et négatifs. Journal de Physique et Le Radium 7(8): 347-353CrossRefGoogle Scholar
  67. 67.
    Proca, A. 1938. Théorie non relativiste des particules à spin entier. Journal de Physique et Le Radium 9(2): 61-66CrossRefGoogle Scholar
  68. 68.
    Rechenberg, H. and L.M. Brown. 1990. Yukawa’s heavy quantum and the mesotron (1935–1937). Centaurus 33: 214-252ADSCrossRefGoogle Scholar
  69. 69.
    Rosenfeld, L. 1930. Zur Quantelung der Wellenfelder. Annalen der Physik 397(1): 113-152ADSCrossRefMathSciNetGoogle Scholar
  70. 70.
    Rosenfeld, L. 1932. La Théorie quantique des champs. Annales de l’Institut Henri Poincaré 2(1): 25-91MathSciNetGoogle Scholar
  71. 71.
    Rueger, A. 1992. Attitudes towards infinities: Responses to anomalies in quantum electrodynamics, 1927–1947. Historical Studies in the Physical and Biological Sciences 22: 309-337CrossRefGoogle Scholar
  72. 72.
    Sakata, S. and H. Yukawa. 1937a. Note on Dirac’s generalized wave equations. Proceedings of the Physico-Mathematical Society of Japan 19: 91-95Google Scholar
  73. 73.
    Sakata, S. and H. Yukawa. 1937b. On the interaction of elementary particles. II. Proceedings of the Physico-Mathematical Society of Japan 19: 1084-1093MATHGoogle Scholar
  74. 74.
    Schneider, M.R. 2010. Die physikalischen Arbeiten des jungen B.L. van der Waerden. Ph.D. thesis, Bergische Universität WuppertalGoogle Scholar
  75. 75.
    Schweber, S.S. 1994. QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga. Princeton University Press, PrincetonGoogle Scholar
  76. 76.
    Schwinger, J. 1937. On the spin of the neutron. Physical Review 52: 1250ADSCrossRefGoogle Scholar
  77. 77.
    Serber, R. 1938. On the dynaton theory of nuclear forces. Physical Review 53: 211Google Scholar
  78. 78.
    Serber, R. and R.P. Crease. 1998. Peace and War: Reminiscences of a Life on the Frontiers of Science. Columbia University Press, New YorkGoogle Scholar
  79. 79.
    Stueckelberg, E. 1937. On the existence of heavy electrons. Physical Review 52: 41-42ADSCrossRefGoogle Scholar
  80. 80.
    Stueckelberg, E. 1938. Die Wechselwirkungskräfte in der Elektrodynamik und in der Feldtheorie der Kernkräfte. Teil II und III. Helvetica Physica Acta 11: 299-328Google Scholar
  81. 81.
    Tomonaga, S.-I. 1997. The Story of Spin. The University of Chicago Press, ChicagoGoogle Scholar
  82. 82.
    van der Waerden, B. 1929. Spinoranalyse. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse, pp. 100–109Google Scholar
  83. 83.
    von Meyenn, K., Ed. 1993. Wolfgang Pauli: Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. volume III: 1940–1949. Springer, BerlinGoogle Scholar
  84. 84.
    von Neumann, J. 1928. Einige Bemerkungen zur Diracschen Theorie des relativistischen Drehelektrons. Zeitschrift für Physik 48: 868-881CrossRefGoogle Scholar
  85. 85.
    Weisskopf, V. 1935. Probleme der neueren Quantentheorie des Elektrons. Die Naturwissenschaften 23(37): 631-637ADSCrossRefMATHGoogle Scholar
  86. 86.
    Weisskopf, V.F. 1983. Growing up with field theory: the development of quantum electrodynamics. In Brown, L.M. and Hoddeson, L. (Eds.), The Birth of Particle Physics. Cambridge University Press, CambridgeGoogle Scholar
  87. 87.
    Wentzel, G. 1943. Einführung in die Quantentheorie der Wellenfelder. Franz Deuticke, WienGoogle Scholar
  88. 88.
    Weyl, H. 1928. Gruppentheorie und Quantenmechanik. Hirzel, Leipzig, 1st editionGoogle Scholar
  89. 89.
    Weyl, H. 1931. Gruppentheorie und Quantenmechanik. Hirzel, Leipzig, 2nd editionGoogle Scholar
  90. 90.
    Wightman, A.S. 1999. [review of] Pauli and the Spin-Statistics Theorem by Ian Duck and E.C.G. Sudarshan. American Journal of Physics 67(8): 742-746ADSCrossRefGoogle Scholar
  91. 91.
    Yukawa, H. 1935. On the interaction of elementary particles. I. Proceedings of the Physico-Mathematical Society of Japan 17: 48-57Google Scholar
  92. 92.
    Yukawa, H., S. Sakata and M. Taketani. 1938. On the interaction of elementary particles. III. Proceedings of the Physico-Mathematical Society of Japan 20: 319-340MATHGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Max-Planck-Institut für WissenschaftsgeschichteBerlinGermany

Personalised recommendations