The European Physical Journal H

, Volume 39, Issue 3, pp 303–323 | Cite as

The positive muon implanted in metals – a story full of surprises

Personal recollection

Abstract

During the period 1975–1990 there was an intense development, at some accelerator laboratories, of a new spectroscopy based on the interaction of an elementary particle, the positive muon, with local magnetic fields present in magnets and superconductors. It was called μSR (or in some applications MuSR), which stands for Muon Spin Rotation or Muon Spin Relaxation. At the present time this spectroscopy has given access to detailed information (often unobtainable with other means), on a large number of magnetic, semiconducting and superconducting systems, but the present article deals with another aspect of μSR, namely the information it could provide on how a light positive particle behaves when placed in a metallic environment. This behaviour has much in common with that of the technologically important “hydrogen in metal”-problem, but could now be studied in a very direct way since the positive muon is radioactive and sends out an easily detectable signal. This signal contains information on the particle’s local environment, its motion from one lattice position to another, its trapping and release from other impurity atoms in the metal and also on the character of the motion itself, particularly at low temperatures where quantum effects dominate. It took nearly 15 years to fully interpret and understand these phenomena which is the topic of the present historic presentation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.E. Karlsson, Solid State Phenomena – as Seen by Muons, protons and Excited Nuclei (Oxford University Press, Oxford, 1993)Google Scholar
  2. 2.
    O. Hartmann, E. Karlsson, L.-O. Norlin, T.O. Niinikoski, K.W. Kehr, D. Richter, J.-M. Welter, A. Yaouanc, J. Le Hericy Studies of muon localization in Cu, Al, and Al-alloys in the temperature interval 0.03–100 K, Phys. Rev. Lett. 44, 337 (1980)CrossRefADSGoogle Scholar
  3. 3.
    O. Hartmann, Quadrupole influence on the dipolar field width for a single interstitial in a metal crystal, Phys. Rev. Lett. 39, 832 (1977)CrossRefADSGoogle Scholar
  4. 4.
    K.W. Kehr, D. Richter, J.-M. Welter, O. Hartmann, E. Karlsson, L.-O. Norlin, T.O. Niinikoski, A. Yaouanc, Muon diffusion in aluminium and dilute aluminium alloys. Experiments and comparison with small-polaron theory, Phys. Rev. B 26, 567 (1982)CrossRefADSGoogle Scholar
  5. 5.
    O. Hartmann, E. Karlsson, E. Wäckelgård, R. Wäppling, D. Richter, R. Hempelmann, T.O. Niinikoski, Low temperature diffusion and trapping of muons in aluminium: new experiments and comparison with theory, Hyperfine Interactions 31, 223 (1986)CrossRefADSGoogle Scholar
  6. 6.
    O. Hartmann, E. Karlsson, R. Wäppling, D. Richter, R. Hempelmann, K. Schulze, B. Patterson, E. Holzschuh, W. Kündig, S.F.J. Cox, Trap identification and impurity-induced localization of muons in Nb, Phys. Rev. B 27, 1943 (1983)CrossRefADSGoogle Scholar
  7. 7.
    M. Borghini, T.O. Niinikoski, J.C. Soulié, O. Hartmann, E. Karlsson, L.-O. Norlin, K. Pernestål, K.W. Kehr, D. Richter, E. Walker, Muon diffusion in Nb in the presence of traps, Phys. Rev. Lett. 40, 1723 (1978)CrossRefADSGoogle Scholar
  8. 8.
    O. Hartmann, L.-O. Norlin, A. Yaouanc, J. LeHericy, E. Karlsson, T.O. Niinikoski, Low temperature studies of muon localization in copper, Hyperfine Interactions 8, 533 (1981)CrossRefADSGoogle Scholar
  9. 9.
    J.-M. Welter, D. Richter, R. Hempelmann, O. Hartmann, E. Karlsson, L.-O. Norlin, T.O. Niinikoski, D. Lenz, Muon diffusion in copper below 2 K, Z. Phys. B 52, 303 (1983)CrossRefADSGoogle Scholar
  10. 10.
    J. Brewer, M. Celio, D.R. Harshman, R. Keitel, S.R. Kreitzman, G.M. Luke, Determination of the very slow μ+ hop rates in Cu by LLF-μSR, Hyperfine Interactions 31, 191 (1986)CrossRefADSGoogle Scholar
  11. 11.
    J. Kondo, Muon diffusion in metals, Hyperfine Interactions 31, 117 (1986)CrossRefADSGoogle Scholar
  12. 12.
    H. Wipf, K. Neumaier, H and D tunneling in niobium, Phys. Rev. Lett. 52, 1308 (1984)CrossRefADSGoogle Scholar
  13. 13.
    J. Kondo, in Fermi Surface Effects, edited by J. Kondo and A. Yoshimori, Solid State Sciences 77 (Springer, Berlin, 1988)Google Scholar
  14. 14.
    Yu. Kagan, N.V. Prokofe’v, in Quantum Tunneling in Condensed Media, edited by Yu. Kagan and A.J. Legget (Elsevier, Amsterdam, 1992)Google Scholar
  15. 15.
    H.J. Fell, R. Hempelmann, O. Hartmann, S. Harris, R. Wäppling, Diffusion of positive muons in niobium doped with titanium. Ber, Bunsenges. Phys. Chem. 95, 1091 (1991)CrossRefGoogle Scholar
  16. 16.
    R. Kadono, R.F. Kiefl, S.R. Kreizman, Q. Li, T. Pfiz, T.M. Riseman, H. Zhou, R. Wäppling, S.W. Harris O. Hartmann E. Karlsson R. Hempelman D. Richter T.O. Niinikoski L.P. Lee B. Sternlieb E.J. Ansaldo Quantum diffusion of the positive muon in the superconducting state of Al, Hyperfine Interactions 64, 737 (1993)CrossRefADSGoogle Scholar
  17. 17.
    E. Karlsson, New aspects of tunneling of flight interstitial particles in solids, Physica B 202, 234 (1994)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations