The European Physical Journal H

, Volume 39, Issue 3, pp 325–351 | Cite as

Cauchy’s almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow

Article

Abstract

Two prized papers, one by Augustin Cauchy in 1815, presented to the French Academy and the other by Hermann Hankel in 1861, presented to Göttingen University, contain major discoveries on vorticity dynamics whose impact is now quickly increasing. Cauchy found a Lagrangian formulation of 3D ideal incompressible flow in terms of three invariants that generalize to three dimensions the now well-known law of conservation of vorticity along fluid particle trajectories for two-dimensional flow. This has very recently been used to prove analyticity in time of fluid particle trajectories for 3D incompressible Euler flow and can be extended to compressible flow, in particular to cosmological dark matter. Hankel showed that Cauchy’s formulation gives a very simple Lagrangian derivation of the Helmholtz vorticity-flux invariants and, in the middle of the proof, derived an intermediate result which is the conservation of the circulation of the velocity around a closed contour moving with the fluid. This circulation theorem was to be rediscovered independently by William Thomson (Kelvin) in 1869. Cauchy’s invariants were only occasionally cited in the 19th century – besides Hankel, foremost by George Stokes and Maurice Lévy – and even less so in the 20th until they were rediscovered via Emmy Noether’s theorem in the late 1960, but reattributed to Cauchy only at the end of the 20th century by Russian scientists.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrashkin, A.A. and E.I. Yakubovich. 1985. Nonstationary vortex flows of an ideal incompressible fluid. J. Appl. Mech. Tech. Phys. 26: 2, 202–208. Translated from Zh. Prikl. Mekh. Tekh. Fiz. 2: 57–64, 1985, in Russian.MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Abrashkin, A.A. and E.I. Yakubovich. 2006. Vortex Dynamics in the Lagrangian Description, Fizmatlit, Moscow.Google Scholar
  3. 3.
    Abrashkin, A.A., D.A. Zen’kovich and E.I. Yakubovich. 1996. Matrix formulation of hydrodynamics and extension of ptolemaic flows to three-dimensional motions. Radiophys. Quantum El. 39: 6, 518-526. Translated from Izv. Vuz. Radiofi. 39: 6, 783–796, 1996, in Russian.MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Andrade, J. 1898. Leçons de Mécanique Physique, Paris, Société d’éditions scientifiques. http://gallica.bnf.fr/ark:/12148/bpt6k8832547.r=andrade.langEN
  5. 5.
    Anonymous, (signed as Hl.). 1863. Aufsatz über Zur allgemeinen Theorie der Bewegung der Flüssigkeiten. Eine von der philosophischen Facultät der Georgia Augusta am 4. Juni 1861 gekrönte Preisschrift, Göttingen in Die Fortschritte der Physik im Jahre 1861 produced by Physikalische Gesellschaft zu Berlin, 57–61. https://play.google.com/books/reader?id=zt0EAAAAQAAJ&printsec=frontcover&output=reader&authuser=0&hl=en&pg=GBS.PA57
  6. 6.
    Appell, P. 1897. Sur les équations de l’ Hydrodynamique et la théorie des tourbillons. Journal de mathématiques pures et appliquées, 5e série 3: 5–16. http://portail.mathdoc.fr/JMPA/PDF/JMPA˙1897˙5˙3˙A1˙0.pdf URLMATHGoogle Scholar
  7. 7.
    Arnold, V.I., Y.B. Zeldovich, A.A. Ruzmaikin and D.D. Sokoloff. 1981. A magnetic field in a stationary flow with stretching in a Riemannian space. Sov. Phys. JETP 54: 1083–1086. Translated from Zh. Eksp. Teor. Fiz. 81: 2052–2058, in Russian.Google Scholar
  8. 8.
    Auerbach, F. 1881. Die theoretische Hydrodynamik nach dem Gange ihrer Entwickelung in der neuesten Zeit in Kürze dargestellt: von dem K. Venetianischen Institute der Wissenschaften gekrönte Preisschrift, F. Vieweg und Sohn, Braunschweig. https://archive.org/stream/dietheoretische01auergoog#page/n7/mode/2up
  9. 9.
    Batchelor, G.K. 1967. An Introduction to Fluid Mechanics, Cambridge University Press, Massachussets.Google Scholar
  10. 10.
    Belhoste, B. 1982. Augustin-Louis Cauchy et la pratique des sciences exactes en France au XIXeme siècle, Thèse de 3eme cycle, Université Paris I.Google Scholar
  11. 11.
    Belhoste, B. 1991. Augustin-Louis Cauchy: a Biography, Springer-Verlag, New York etc.Google Scholar
  12. 12.
    Bennett, A. 2006. Lagrangian Fluid Dynamics, Cambridge University Press.Google Scholar
  13. 13.
    Brenier, Y., U. Frisch, M. Hénon, G. Loeper, S. Matarrese, R. Mohayaee and A. Sobolevski. 2003. Reconstruction of the early Universe as a convex optimization problem. Mon. Not. R. Astron. Soc. 346: 501–524.CrossRefADSGoogle Scholar
  14. 14.
    Breslin, J.P. and P. Andersen. 1996. Hydrodynamics of Ship Propellers, Cambridge University Press.Google Scholar
  15. 15.
    Buchert, T. 1992. Lagrangian theory of gravitational instability of Friedman-Lemaitre cosmologies and the Zeldovich approximation. Mon. Not. R. Astron. Soc. 254: 729–737.CrossRefADSGoogle Scholar
  16. 16.
    Calkin, M.G. 1963. An action principle for magnetohydrodynamics. Can. J. Phys. 41: 12, 2241–2251.MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Cantor, M. 1879. Hankel Hermann H. in Allgemeine deutsche Biographie 10: 516–519. http://daten.digitale-sammlungen.de/0000/bsb00008368/images/index.html?fip=193.174.98.30&id=00008368&seite=518
  18. 18.
    Cauchy, A.-L. 1815/1827. Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie – Prix d’analyse mathématique remporté par M. Augustin-Louis Cauchy, ingénieur des Ponts et Chaussées. (Concours de 1815). Mémoires présentés par divers savans à l’Académie royale des sciences de l’Institut de France et imprimés par son ordre. Sciences mathématiques et physiques. Tome I, imprimé par autorisation du Roi à l’Imprimerie royale, 5–318. http://gallica.bnf.fr
  19. 19.
    Childress, S. and A.D. Gilbert. 1995. Stretch, Twist, Fold: The Fast Dynamo, Vol. 37, Springer-Verlag.Google Scholar
  20. 20.
    Crowe, M.J. 2008. Hankel, Hermann in Complete Dictionary of Scientific Biography, Encyclopedia.com. http://www.encyclopedia.com/doc/1G2-2830901844.html
  21. 21.
    Dalmedico, A.D. 1989. La propagation des ondes en eau profonde et ses développements mathématiques (Poisson, Cauchy 1815–1825). In The History of Modern Mathematics, Vol. 2, Proceedings of the Symposium on the History of Modern Mathematics, New-York, June, 20–24, 1988, edited by D.E. Rowe, J. Mc Cleary, 129–168.Google Scholar
  22. 22.
    Darrigol, O. 2005. Worlds of flow: A history of hydrodynamics from the Bernoullis to Prandtl, Oxford University Press.Google Scholar
  23. 23.
    Darrigol, O. and U. Frisch. 2008. From Newtons mechanics to Eulers equations. Physica D 237: 14, 1855–1869.MathSciNetCrossRefMATHADSGoogle Scholar
  24. 24.
    Dick, A. 1970. Emmy Noether: 1882–1935, Birkhäuser, Basel. Translated into English by H.I. Blocher, 1981, Birkhäuser, Boston Inc. https://archive.org/stream/EmmyNoether1882-1935/Dick-EmmyNoether1882-1935#page/n1/mode/2up
  25. 25.
    (Lejeune-)Dirichlet, G.P. 1859. Produced post mortem by R. Dedekind, Untersuchungen über ein Problem der Hydrodynamik. Abhandlungen der mathematischen Klasse der königlichen Gesellschaft der Wissenschaften zu Göttingen 8: 3–42. http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002018772 URLGoogle Scholar
  26. 26.
    Eckart, C. 1960. Variation Principles of Hydrodynamics. Phys. Fluids 3: 421–427.MathSciNetCrossRefMATHADSGoogle Scholar
  27. 27.
    Eckart, C. 1963. Some transformation of the hydrodynamic equations. Phys. Fluids 6: 1037–1041.MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Eckert, M. 2006. The Dawn of Fluid Mechanics, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.Google Scholar
  29. 29.
    Euler, L. 1755. [printed in 1757] Continuation des recherches sur la théorie du mouvement des fluides. MASB 1: 316–361. Also in Opera omnia, Ser. 2 12: 92–132 E227. http://bibliothek.bbaw.de/bibliothek/digital/struktur/02-hist/1755/jpg-0600/00000324.htm URLGoogle Scholar
  30. 30.
    Eyink, G., U. Frisch, R. Moreau and A. Sobolevsky. 2008. General Introduction. In Euler Equations: 250 Years On. Physica D 237: xi–xv.CrossRefGoogle Scholar
  31. 31.
    Eyink, G. 2013. in Homework No. 3, 550.694, Due March 25, 2013, Course: Turbulence Theory II, at the John Hopkins University, Baltimore. http://www.ams.jhu.edu/˜eyink/Turbulence/hw03.pdf
  32. 32.
    Friedlander, S. and A. Lipton-Lifschitz. 2003. Localized instabilities in fluids. In Handbook of Mathematical Fluid Dynamics, Vol. 2, 289–354. Edited by S. Friedlander, D. Serre, North-Holland.Google Scholar
  33. 33.
    Frisch, U. and V. Zheligovsky. 2014. A very smooth ride in a rough sea. Commun. Math. Phys. 326: 499–505. http://arxiv.org/abs/1212.4333 URLMathSciNetCrossRefMATHADSGoogle Scholar
  34. 34.
    Goldstein, S. 1938. Modern Developments in Fluid Dynamics, Clarendon Press.Google Scholar
  35. 35.
    Hankel, H. 1861. Zur allgemeinen Theorie der Bewegung der Flüssigkeiten. Eine von der philosophischen Facultät der Georgia Augusta am 4. Juni 1861 gekrönte Preisschrift, Göttingen. Printed by Dieterichschen Univ.-Buchdruckerei (W. Fr. Kaestner). http://babel.hathitrust.org/cgi/pt?id=mdp.39015035826760;view=1up;seq=5
  36. 36.
    Hankel, H. 1874. Zur Geschichte der Mathematik in Althertum und im Mittelalter, (published post-mortem), Druck und Verlag von B.G. Teubner. http://gallica.bnf.fr/ark:/12148/bpt6k82883t
  37. 37.
    von Helmholtz, H. 1858. Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Journal für die reine und angewandte Mathematik 55: 25–55. http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002150212. Translated into English by P.G. Tait, 1867 On Integrals of the Hydrodynamical Equations, which express vortex motion. The London, Edinburgh, and Dublin Philosophical Magazine, supplement to Vol. XXXIII, 485–512. http://www.biodiversitylibrary.org/item/121849#page/499/mode/1up URLURLCrossRefGoogle Scholar
  38. 38.
    Hölder, E. 1933. Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten incompressiblen Flüssigkeit. Mathematische Zeitschrift 37: 698–726. http://www.digizeitschriften.de/de/dms/img/?PPN=PPN266833020˙0037&DMDID=dmdlog70 URLMathSciNetCrossRefGoogle Scholar
  39. 39.
    Institut de France. 1816. Prix décérnés dans la séance publique du 8 janvier 1816. Théorie des ondes. In Annales Maritimes et Coloniales ou Recueil de Lois ou Ordonnances Royales, etc 1816 IIe Partie, 60–61, publiés par M. Bajot. Imprimerie royale (Paris). http://books.google.de/books?id=8WIYAAAAYAAJ&pg=PA60&lpg=PA60&dq=institut+royal+de+france+prix+decernes+dans+la+seance+publique+1816&source=bl&ots=FycIwkN˙hN&sig=FV4GE9JnwHF0lic42zFtnWAC2Gs&hl=en&sa=X&ei=RiT7UuC4IcaGywPd9YKACQ&redir˙esc=y#v=onepage&q=institut%20royal%20de%20france%20prix%20decernes%20dans%20la%20seance%20publique%201816&f=false
  40. 40.
    Katz, V.J. 1979. The history of Stokes’ Theorem. Math. Mag. 52: 3, 146–156.MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Kirchhoff, G. 1876. Vorlesungen über mathematische Physik. Mechanik, Druck und Verlag von B.G. Teubner, Leipzig. https://archive.org/stream/vorlesungenberm02kircgoog#page/n6/mode/2up
  42. 42.
    Königsberger, L. 1902–1903. Hermann von Helmholtz, 3 volumes, F. Vieweg und Sohn, Braunschweig. Prepared for internet by G. Dörflinger 2010 Universitätsbibliothek Heidelberg. http://ub-fachinfo.uni-hd.de/math/htmg/HHelmholtz.htm. Translated into English by F.A. Welby, (being the part about the Life, slightly abridged with permission of the author and German publisher), with a preface by Lord Kelvin, 1906, Oxford, at the Clarendon Press. https://archive.org/stream/hermannvonhelmho00koenrich#page/n5/mode/2up
  43. 43.
    Kuznetsov, E.A. 2006. Vortex line Representation for the Hydrodynamic Type equation. J. Nonlinear Math. Phys. 13: 1, 64–80.MathSciNetCrossRefMATHADSGoogle Scholar
  44. 44.
    Lagrange, J.L. 1788. Traité de méchanique analitique, Paris. http://gallica.bnf.fr/ark:/12148/bpt6k862625
  45. 45.
    Lamb, H. 1932. Hydrodynamics, 6th ed., Dover Publications.Google Scholar
  46. 46.
    Landau, L.D. and E.M. Lifshitz. 1959. Fluid Mechanics, Vol. 6, 1st edition, Pergamon Press. Translated from Russian original, 1944.Google Scholar
  47. 47.
    Leray, J. 1934. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta mathematica 63: 1, 193–248. http://www.cmi.univ-mrs.fr/˜gallouet/artbase.d/leray-ns.pdf URLMathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Lévy, M. 1890. L’hydrodynamique moderne et l’hypothèse des actions a distance. Revue Générale des Sciences pures et appliquées 23: 721–728. http://gallica.bnf.fr URLGoogle Scholar
  49. 49.
    Lichtenstein, L. 1927. Über einige Existenzprobleme der Hydrodynamik. Zweite Abhandlung. Nichthomogene, unzusammendrückbare, reibungslose Flüssigkeiten. Mathematische Zeitschrift 26: 1, 196–323. http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002369230&IDDOC=82659 URLMathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Lichtenstein, L. 1929. Grundlagen der Hydromechanik, Die Grundlehren der mathematischen Wissenschaften. Band XXX, Julius Springer, Berlin.Google Scholar
  51. 51.
    Majda, A.J. and A.V. Bertozzi. 2002. Vorticity and Incompressible Flow, Cambridge University Press.Google Scholar
  52. 52.
    Meleshko, V.V. and H. Aref. 2007. A bibliography of vortex dynamics 1858–1956. Advances in Applied Mechanics 41: 197–292.CrossRefGoogle Scholar
  53. 53.
    Moffatt, H.K. 1978. Magnetic Field Generation in Electrically Conducting Fluids, Cambridge University Press, Cambridge, London, New York, Melbourne.Google Scholar
  54. 54.
    Monna, A.F. 1973. Hermann Hankel. Niew Arch. voor Wisk. 21: 64–87.MathSciNetMATHGoogle Scholar
  55. 55.
    Moutarde, F., J.-M. Alimi, F. Bouchet, R. Pellat and A. Ramani. 1991. Precollapse scale invariance in gravitational instability. Astrophys. J. 382: 377–381.CrossRefADSGoogle Scholar
  56. 56.
    Newcomb, W.A. 1967. Exchange invariance in fluid systems. Proc. Symp. Appl. Math. 18: 152–161.CrossRefGoogle Scholar
  57. 57.
    Noether, E. 1918. Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse 1918, 235–257. http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN00250510X&IDDOC=63716. Translated into English by M.A. Tavel. 1971. Invariant Variation Problem. Transport Theory and Statistical Physics 1: 3, 183–207. http://arxiv.org/pdf/physics/0503066.pdf
  58. 58.
    Ohkitani, K. 2014. An Elementary Account of Vorticity and Related Equations: Towards understanding dynamics of localised vortices in nonlocal interaction, Cambridge University Press, to appear.Google Scholar
  59. 59.
    Oswatitsch, K. 1959. Strömungsmechanik, Band VIII/1 in Handbuch der Physik, edited by S. Flügge, Springer.Google Scholar
  60. 60.
    Padhye, N. and P.J. Morrison. 1996. Fluid element relabeling symmetry. Phys. Lett. A 219: 287–292.CrossRefADSGoogle Scholar
  61. 61.
    Parkinson, E.M. 2008. Stokes, George Gabriel, in Dictionary of Scientific Biography, Encyclopedia.com. http://www.encyclopedia.com/doc/1G2-2830904174.html
  62. 62.
    Pohle, F.V. 1951. The Lagrangian equations of hydrodynamics: solutions which are analytic functions of the time. Thesis, New York University, January 1951.Google Scholar
  63. 63.
    Poincaré, Henri. 1893. Théorie des tourbillons, Gauthier-Villars, Paris. https://archive.org/stream/thoriedestourb00poin#page/n5/mode/2up
  64. 64.
    Prandtl, L. 1905. Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Verhandlungen des III. internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13. August 1904, edited by A. Krazer, B.G. Teubner, Leipzig, 484–491. https://archive.org/stream/verhandlungende00krazgoog#page/n504/mode/2up. Translated into English 1928, On the motion of fluids of very small viscosity. NACA, Tech. Memo., N. 452. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930090813˙1993090813.pdf
  65. 65.
    Procès-Verbaux des Séances de l’Académie. 1915. Tome V. 1812–1815, Académie des Sciences, Institut de France. http://gallica.bnf.fr
  66. 66.
    Ramsey, A.S. 1913. A Treatise On Hydromechanics. Part II, Hydrodynamics G. Bell and Sons, LTD, London. http://ebook.lib.hku.hk/CADAL/B31396288V2/
  67. 67.
    Risser, M.R. 1925. Essai sur la théorie des ondes par émersion, Thèse présentée a la faculté des sciences de Paris, Gauthier-Villars et Cie, Éditeurs, Paris. http://www.numdam.org/item?id=THESE˙1925˙˙53˙˙1˙0
  68. 68.
    Rose, H.A. and P.-L. Sulem. 1978. Fully developed turbulence and statistical mechanics. J. Phys. Paris 39: 441–484.MathSciNetCrossRefGoogle Scholar
  69. 69.
    Salmon, R. 1988. Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20: 225–256.CrossRefADSGoogle Scholar
  70. 70.
    Serfati, P. 1995. Equation d’Euler et holomorphies à faible régularité spatiale. C. R. Acad. Sci. Sér. 1, Math. 320: 2, 175–180.MathSciNetMATHGoogle Scholar
  71. 71.
    Shnirelman, A. 2012. On the analyticity of particle trajectories in the ideal incompressible fluid. Preprint arXiv:1205.5837 [math-AP]Google Scholar
  72. 72.
    Smithies, F. 1997. Cauchy and the creation of complex function theory, Cambridge University Press.Google Scholar
  73. 73.
    Sommerfeld, A. 1950. Mechanics of Deformable Bodies, Academic Press. Inc., New York.Google Scholar
  74. 74.
    Stoker, J.J. 1957. Water waves: The Mathematical Theory with Applications, Wiley-Interscience. https://archive.org/stream/waterwavesthemat033435mbp#page/n9/mode/2up
  75. 75.
    Stokes, G.G. 1845, [printed in 1847]. On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids. Transactions of the Cambridge Philosophical Society 8: 287–319. http://archive.org/stream/transactionsofca08camb#page/287/mode/1up
  76. 76.
    Stokes, G.G. 1846, [printed in 1847]. Report on the recent researches in Hydrodynamics. Report of the British Association for the Advancement of Science, 1–20. Report of the sixteenth Meeting of the British association held at Southampton in September 1846. http://archive.org/stream/reportofbritisha46brit#page/n47/mode/2up
  77. 77.
    Stokes, G.G. 1848. Notes on Hydrodynamics. IV Demonstration of a fundamental theorem. The Cambridge and Dublin Mathematical Journal, Vol. III, 209–219. https://archive.org/stream/mathphyspapers02stokrich#page/n51/mode/2up
  78. 78.
    Stokes, G.G. 1883. Notes on Hydrodynamics. IV Demonstration of a fundamental theorem. Mathematical and Physical Papers by George Gabriel Stokes, reprinted from the original journals and transactions, with additional notes by the Author, Cambridge University Press 2: 36–50. https://archive.org/stream/mathphyspapers02stokrich#page/n51/mode/2up
  79. 79.
    Stokes, G.G. and W. Thomson (Lord Kelvin). 1846–1869 & 1870–1903. Vols. 1 and 2 of The Correspondence Between Sir George Gabriel Stokes and Sir William Thomson, Baron Kelvin of Largs, edited with an Introduction by D.B. Wilson, Cambrige University Press.Google Scholar
  80. 80.
    Strutt, J.W. (Lord Rayleigh). 1904. Sir George Gabriel Stokes, Bart. 1819–1903. Proceedings of the Royal Society of London 75: 199–216. http://rspl.royalsocietypublishing.org/content/75/19.full.pdf URLGoogle Scholar
  81. 81.
    Stuart, J.T. and M. Tabor. 1990. The Lagrangian picture of Fluid Motion. Phil. Trans. R. Soc. A 333: 263–271.MathSciNetCrossRefMATHADSGoogle Scholar
  82. 82.
    Thomson, W. (Lord Kelvin). 1869. On vortex motion. Transactions of the Royal Society of Edinburgh 25: 217–260. https://archive.org/stream/transactionsofro25royal#page/n245/mode/2up URLCrossRefGoogle Scholar
  83. 83.
    Toschi, F. and E. Bodenschatz. 2009. Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41: 375–404.MathSciNetCrossRefADSGoogle Scholar
  84. 84.
    Truesdell, C. 1954a. The Kinematics of Vorticity, Indiana University Science Series no. 19. Indiana University Press (Bloomington).Google Scholar
  85. 85.
    Truesdell, C. 1954b. Rational fluid mechanics, 1657–1765. In Euler, Opera omnia, ser. 2, 12 (Lausanne), IX–CXXV.Google Scholar
  86. 86.
    Valson, C.-A. 1868. La vie et les travaux du baron Cauchy: membre de l’ Academie des sciences, Vols. 1 and 2, Gauthier-Villars. https://archive.org/details/lavieetlestrava00valsgoog
  87. 87.
    Vishik, M.M. 1989. Magnetic field generation by the motion of a highly conducting fluid. Geophys. Astro. Fluid 48: 151–167.MathSciNetCrossRefMATHADSGoogle Scholar
  88. 88.
    Weber, H.M. 1868. Über eine Transformation der hydrodynamischen Gleichungen. Journal für die reine und angewandte Mathematik (Crelle), Berlin 68: 286–292. http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN00215353X URLCrossRefMATHGoogle Scholar
  89. 89.
    Wolibner, W. 1933. Un théorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Mathematische Zeitschrift 37: 698–726. http://www.digizeitschriften.de/de/dms/img/?PPN=PPN266833020˙0037&DMDID=dmdlog69 URLMathSciNetCrossRefGoogle Scholar
  90. 90.
    Wood, A. 2003. George Gabriel Stokes 1819–1903. In Physicists of Ireland, Passion and Precision, edited by M. McCartney and A. Whitaker, pp. 85–94, Institute of Physics Publishing (Bristol & Philadelphia).Google Scholar
  91. 91.
    Yakubovich, E.I. and D.A. Zenkovich. 2001. Matrix approach to Lagrangian fluid dynamics. J. Fluid Mech. 443: 1, 167–196.MathSciNetMATHADSGoogle Scholar
  92. 92.
    von Zahn, W. 1874. Einige Worte zum Andenken an Hermann Hankel. Mathematische Annalen 7: 4, 583–590. http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN235181684˙0007&DMDID=DMDLOG˙0043 URLCrossRefMATHGoogle Scholar
  93. 93.
    Zakharov, V.E. and E.A. Kuznetsov. 1997. Hamiltonian formalism for nonlinear waves. Phys.-Usp. 40: 11, 1087–1116. Translated from Usp. Fiz. Nauk 167: (11), 1137–1167, in Russian.CrossRefADSGoogle Scholar
  94. 94.
    Zheligovsky, V. and U. Frisch. 2014. Time-analyticity of Lagrangian particle trajectories in ideal fluid flow, J. Fluid Mech. 749: 404–430. http://arxiv.org/abs/1312.6320 URLMathSciNetCrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.UNS, CNRS, OCA, Lab. LagrangeNice Cedex 4France
  2. 2.INAF, Osservatorio Astrofisico di TorinoPino TorineseItaly

Personalised recommendations