The European Physical Journal H

, Volume 39, Issue 3, pp 263–281 | Cite as

The names of physics: plasma, fission, photon

Article

Abstract

The study of the origin and dissemination of names used in science is a useful but largely uncultivated historiographical method. What I call the etymological approach to the history of science is here illustrated by an examination of three important terms that originated in the 1920s and 1930s and are today as popular as ever. The names “plasma” and “fission” were introduced in physics in 1928 and 1939, respectively, in both cases by borrowing a name that was already firmly established in the biological sciences. The etymology of “photon” is different and more complex. Although it was quickly understood as just a synonym for Einstein’s light quantum going back to 1905, when it was originally introduced it was with a different meaning. It can be traced back to 1916, when it was proposed as a unit for the illumination of the retina, and ten years later the name was revived in still another non-Einsteinian context. Apart from examining how the three words first entered physics, I also look at how the physics community initially responded to them.

References

  1. 1.
    Aaserud, F. 1990. Redirecting Science: Niels Bohr, Philanthropy and the Rise of Nuclear Physics. Cambridge University Press, Cambridge.Google Scholar
  2. 2.
    Alfvén, H. 1950. Cosmical Electrodynamics. Oxford University Press, Oxford.Google Scholar
  3. 3.
    Arnold, W.A. 1991. Experiments. Photosynth. Res. 27: 73-82.CrossRefGoogle Scholar
  4. 4.
    Bacciagaluppi, G. and A. Valentini. 2009. Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge.Google Scholar
  5. 5.
    Badash, L., E. Hodes and A. Tiddens. 1986. Nuclear fission: Reactions to the discovery in 1939. Proc. Am. Phil. Soc. 130: 196-231.Google Scholar
  6. 6.
    Band, W. 1927. Prof. Lewis’ “light corpuscles”. Nature 120: 405-406.CrossRefADSGoogle Scholar
  7. 7.
    Banerji, A.C. 1934. Nuclear structure, gamma-ray fission, and the expanding universe. Nature 133: 984.CrossRefADSGoogle Scholar
  8. 8.
    Barten, P.G.J. 1999. Contrast Sensitivity of the Human Eye and its Effects on Image Quality. International Society for Optical Engineering, Bellingham, Washington.Google Scholar
  9. 9.
    Berberan-Santos, M.N. 2001. Pioneering contributions of Jean and Francis Perrin to molecular luminescence. In New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences, edited by B. Valeur, J.-C. Brochon. Springer, Berlin, pp. 7-33.Google Scholar
  10. 10.
    Birtwistle, G. 1928. The New Quantum Mechanics. Cambridge University Press, Cambridge.Google Scholar
  11. 11.
    Bohr, N. 1939a. Resonance in uranium and thorium disintegrations and the phenomenon of nuclear fission. Phys. Rev. 55: 418-419.CrossRefMATHADSGoogle Scholar
  12. 12.
    Bohr, N. 1939b. Disintegration of heavy nuclei. Nature 143: 330.CrossRefMATHADSGoogle Scholar
  13. 13.
    Brown, S.C. 1978. A short history of gaseous electronics. In Gaseous Electronics, Electrical Discharges, edited by M.N. Hirsh, H.J. Oskam. Academic Press, London, Vol. 1, pp. 1-18.Google Scholar
  14. 14.
    Brush, S.G. 1996. A History of Planetary Physics: Fruitful Encounters. Cambridge University Press, Cambridge.Google Scholar
  15. 15.
    Caso, A.L. 1980. The production of new scientific terms. Amer. Speech 55: 101-111.CrossRefGoogle Scholar
  16. 16.
    Coffey, P. 2008. Cathedrals of Science: The Personalities and Rivalries that Made Modern Chemistry. Oxford University Press, Oxford.Google Scholar
  17. 17.
    Compton, A.H. 1928a. Discordances entre l’expérience et la théorie électromagnétique du rayonnement. In Électrons et Photons. Rapports et Discussions de Cinquième Conseil de Physique, edited by Institut International de Physique Solvay. Gauthier-Villars, Paris, pp. 55-85.Google Scholar
  18. 18.
    Compton, A.H. 1928b. X-rays as a branch of optics. J. Opt. Soc. Am. Rev. Sci. Instr. 16: 71-87.CrossRefADSGoogle Scholar
  19. 19.
    Compton, A.H. 1929. What things are made of. Sci. Am. 140: 110-113, 234-236.CrossRefADSGoogle Scholar
  20. 20.
    Comstock, D.F. and L.T. Troland. 1917. The Nature of Matter and Electricity: An Outline of Modern Views. Van Nostrand Co., New York.Google Scholar
  21. 21.
    De Broglie, L. 1925. Recherche sur la théorie des quanta. Ann. Physique 3: 22-138.MATHGoogle Scholar
  22. 22.
    Dingle, H. 1924. Modern Astrophysics. W. Collins & Co., London.Google Scholar
  23. 23.
    Dirac, P.A.M. 1930. The Principles of Quantum Mechanics. Oxford University Press, Oxford.Google Scholar
  24. 24.
    Franklin, A. 2013. Millikan’s measurements of Planck’s constant. Eur. Phys. J. H 38: 573-594.CrossRefGoogle Scholar
  25. 25.
    Friedel, E. and F. Wolfers. 1924. Les variations de longueur d’onde des rayons X par diffusions et la loi de Bragg. Comptes Rendus 178: 199-200.Google Scholar
  26. 26.
    Frisch, O.R. 1939. Physical evidence for the division of heavy nuclei under neutron bombardment. Nature 143: 276.CrossRefMATHADSGoogle Scholar
  27. 27.
    Frisch, O.R. 1979. What Little I Remember. Cambridge University Press, Cambridge.Google Scholar
  28. 28.
    Frisch, O.R. and J.A. Wheeler. 1967. The discovery of fission. Phys. Today 20: 43-52.CrossRefGoogle Scholar
  29. 29.
    Gabor, D., E.A. Ash and D. Dracott. 1955. Langmuir’s paradox. Nature 176: 916-919.CrossRefADSGoogle Scholar
  30. 30.
    Graetzer, H.G. and D.L. Anderson. 1971. The Discovery of Nuclear Fission. Van Nostrand Reinhold, New York.Google Scholar
  31. 31.
    Haas, A.E. 1928. Materiewellen und Quantenmechanik. Akademische Verlagsgesellschaft, Lepzig.Google Scholar
  32. 32.
    Hahn, O. and F. Strassmann. 1939. Nachweis der Entstehung aktiver Bariumisotope aus Uran und Thorium durch Neutronenbestrahlung: Nachweis weiterer aktiver Bruchstücke bei der Uranspaltung. Naturwissenschaften 27: 89-95.CrossRefMATHADSGoogle Scholar
  33. 33.
    Henri, V. and R. Wurmser. 1913. Action des rayons ultraviolets sur l’eau oxygénée. Comptes Rendus 157: 126-128.Google Scholar
  34. 34.
    Jeans, J.H. 1925. The radiation from a pulsating star and from a star in process of fission. Mon. Not. R. Astron. Soc. 86: 86-93.CrossRefADSGoogle Scholar
  35. 35.
    Joly, J. 1921a. A quantum theory of vision. Phil. Mag. 41: 289-304.CrossRefGoogle Scholar
  36. 36.
    Joly, J. 1921b. A quantum theory of colour vision. Proc. Roy. Soc. B 92: 219-232.CrossRefADSGoogle Scholar
  37. 37.
    Koch, C.H. 1836. Das System der Circulation in seiner Entwicklung durch die Thierreiche und im Menschen. Cotta’schen Buchhandlung, Stuttgart.Google Scholar
  38. 38.
    Koch, C.H. 1839. The circulating system. The Lancet 32: 712-718,CrossRefGoogle Scholar
  39. 39.
    Kojevnikov, A.B. 1999. Freedom, collectivism, and quasiparticles: Social metaphors in quantum physics. Hist. Stud. Phys. Biol. Sci. 29: 295-331.CrossRefGoogle Scholar
  40. 40.
    Kragh, H. 2013. Nordic cosmogonies: Birkeland, Arrhenius and fin-de-siècle cosmical physics. Eur. Phys. J. H 38: 549-572.CrossRefGoogle Scholar
  41. 41.
    Kragh, H. 2014a. Naming the big bang. Hist. Stud. Nat. Sci. 44: 3-36.Google Scholar
  42. 42.
    Kragh, H. 2014b. Photon: New light on an old name. Arxiv: 1401.0293 [physics.hist-ph].Google Scholar
  43. 43.
    Kruta, V. 1975. Purkyně, Jan Evangelista. In Dictionary of Scientific Biography, edited by C.C. Gillispie. Charles Scribner’s Sons, New York, Vol. 11, pp. 215-217.Google Scholar
  44. 44.
    Lamb, W.E. 1995. Anti-photon. Appl. Phys. B 60: 77-84.CrossRefADSGoogle Scholar
  45. 45.
    Langmuir, I. 1928. Oscillations in ionized gases. Proc. Natl. Acad. Sci. 14: 627-637.CrossRefADSGoogle Scholar
  46. 46.
    Lavorel, J. 1996. The importance of being lucky: A tribute to William Arnold. Photosynth. Res. 48: 31-34.CrossRefGoogle Scholar
  47. 47.
    Lewis, E. 1998. A Biography of Distinguished Scientist Gilbert Newton Lewis. Edwin Mellen Press, New York.Google Scholar
  48. 48.
    Lewis, G.N. 1926a. Light waves and light corpuscles. Nature 117: 236-238.CrossRefMATHADSGoogle Scholar
  49. 49.
    Lewis, G.N. 1926b. The conservation of photons. Nature 118: 874-875.CrossRefADSGoogle Scholar
  50. 50.
    Mehra, J. and H. Rechenberg. 2000. The Historical Development of Quantum Mechanics. Springer, New York, Vol. 6.Google Scholar
  51. 51.
    Meitner, L. and O.R. Frisch. 1939. Disintegration of uranium by neutrons: A new type of nuclear reactions. Nature 143: 239-240.CrossRefMATHADSGoogle Scholar
  52. 52.
    Millikan, R.H. 1924. The Electron. Its Isolation and Measurement and the Determination of Some of its Properties. University of Chicago Press, Chicago.Google Scholar
  53. 53.
    Millikan, R.H. and C.D. Anderson. 1932. Cosmic-ray energies and their bearing on the photon and neutron hypotheses. Phys. Rev. 40: 325-328.CrossRefADSGoogle Scholar
  54. 54.
    Mott-Smith, H.M. 1971. History of “plasmas”. Nature 233: 219.CrossRefADSGoogle Scholar
  55. 55.
    Nudds, J.R. 1986. The life and work of John Joly (1857–1933). Irish J. Earth Sci. 8: 81-94.Google Scholar
  56. 56.
    Olby, R. 1972. Fleming, Walther. In Dictionary of Scientific Biography, edited by C.C. Gillispie. Charles Scribner’s Sons, New York, Vol. 5, pp. 34-36.Google Scholar
  57. 57.
    Pais, A. 1982. “Subtle is the Lord...”: The Science and the Life of Albert Einstein. Oxford University Press, Oxford.Google Scholar
  58. 58.
    Peierls, R., ed. 1986. Niels Bohr. Collected Works, Vol. 9: Nuclear Physics (1929-1952). North-Holland, Amsterdam.Google Scholar
  59. 59.
    Peratt, A.L. 1985. Birkeland and the electromagnetic cosmology. Sky & Telescope 69: 389-391.ADSGoogle Scholar
  60. 60.
    Pines, D. 1956. Collective energy losses in solids. Rev. Mod. Phys. 28: 184-198.CrossRefMATHADSGoogle Scholar
  61. 61.
    Post, R.F. 1995. Plasma physics in the twentieth century. In Twentieth Century Physics, edited by L.M. Brown, A. Pais, B. Pippard. American Institute of Physics Press, New York, pp. 1617-1690.Google Scholar
  62. 62.
    Reich, L.S. 1983. Irving Langmuir and the pursuit of science and technology in the corporate environment. Techn. Cult. 24: 199-221.CrossRefGoogle Scholar
  63. 63.
    Rosenfeld, A. 1966. The Quintessence of Irving Langmuir. Pergamon Press, Oxford.Google Scholar
  64. 64.
    Stuewer, R.H. 1975a. The Compton Effect: Turning Point in Physics. Science History Publications, New York.Google Scholar
  65. 65.
    Stuewer, R.H. 1975b. G.N. Lewis on detailed balancing, the symmetry of time, and the nature of light. Hist. Stud. Phys. Sci. 6: 469-511.Google Scholar
  66. 66.
    Stuewer, R.H. 1985. Bringing the news of fission to America. Physics Today 38: 49-56.CrossRefGoogle Scholar
  67. 67.
    Stuewer, R.H. 1986. The naming of the deuteron. Am. J. Phys. 54: 206-218.CrossRefADSGoogle Scholar
  68. 68.
    Suits, C.G., ed. 1960–1962. The Collected Works of Irving Langmuir. Pergamon Press, Oxford.Google Scholar
  69. 69.
    Tonks, L. 1967. The birth of “plasma”. Am. J. Phys. 35: 857-858.CrossRefADSGoogle Scholar
  70. 70.
    Tonks, L. and I. Langmuir. 1929. General theory of the plasma of an arc. Phys. Rev. 34: 876-922.CrossRefADSGoogle Scholar
  71. 71.
    Troland, L.T. 1916. Apparent brightness; its conditions and properties. Trans. Illum. Engin. Soc. 11: 947-975.Google Scholar
  72. 72.
    Troland, L.T. 1917. On the measurement of visual stimulation intensities. J. Exp. Psych. 2: 1-33.CrossRefGoogle Scholar
  73. 73.
    Troland, L.T. 1922. The present status of visual science. Bull. Nat. Res. Council 5: 1-120.Google Scholar
  74. 74.
    Walker, C.T. and G.A. Slack. 1970. Who named the –ON’s? Am. J. Phys. 38: 1380-1389.CrossRefADSGoogle Scholar
  75. 75.
    Weart, S.R. 1983. The discovery of fission and a nuclear physics paradigm. In Otto Hahn and the Rise of Nuclear Physics, edited by W.R. Shea. Reidel, Dordrecht, pp. 91-134.Google Scholar
  76. 76.
    Weart, S.R. and M. Phillips, eds. 1985. History of Physics: Readings from Physics Today. American Institute of Physics, New York.Google Scholar
  77. 77.
    Weyl, H. 1931. The Theory of Groups and Quantum Mechanics. Dover Publications, New York.Google Scholar
  78. 78.
    Wolfers, F. 1924. Interférence par diffusion. Comptes Rendus 179: 262-262.Google Scholar
  79. 79.
    Wolfers, F. 1925. Sur un nouveau phénomène en optique; interférence par diffusion. J. Phys. 6: 354-368.Google Scholar
  80. 80.
    Wolfers, F. 1926. Une action probable de la matière sur les quanta de radiation. Comptes Rendus 183: 276-277.Google Scholar
  81. 81.
    Wolfers, F. 1929. Transmutation des Éléments. Éditions Scientifiques, Paris.Google Scholar
  82. 82.
    Wurmser, R. 1925a. La rendement énergétique de la photosynthèse chlorophylliene. Ann. Physiol. Physicochimie Biol. 1: 47-63.Google Scholar
  83. 83.
    Wurmser, R. 1925b. Sur l’activité des diverses radiations dans la photosynthèse. Comptes Rendus 181: 374-375.Google Scholar
  84. 84.
    Wurmser, R. 1987. Letter to the editor. Photosynth. Res. 13: 91-93.CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Centre for Science Studies, Department of Mathematics, Aarhus UniversityAarhusDenmark

Personalised recommendations