The European Physical Journal H

, Volume 39, Issue 1, pp 3–36 | Cite as

The beginnings of theoretical condensed matter physics in Rome: a personal remembrance

  • Carlo Di CastroEmail author
  • Luisa BonolisEmail author
Oral History Interview


This oral history interview provides a personal view on how theoretical condensed matter physics developed in Rome starting in the sixties of the last century. It then follows along the lines of research pursued by the interviewee up to the date of the interview, in March 2006. The topics considered range from the phenomenology of superfluid helium and superconductors, critical phenomena and renormalisation group approach, quantum fluids to strongly correlated electron systems and high temperature superconductors. Within these topics, fundamental problems of condensed matter physics are touched upon, such as the microscopic derivation of scaling, the metal-insulator transition and the interaction effects on disordered electron systems beyond the Anderson localisation, and the existence of heterogeneous states in cuprates.


Renormalisation Group Hubbard Model Critical Phenomenon Charge Density Wave Quantum Critical Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrahams, E., E.P. Anderson, D.C. Licciardello and T.V. Ramakrishnan. 1979. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42: 673 ADSCrossRefGoogle Scholar
  2. 2.
    Abrikosov, A.A., L.P. Gorkov and L. Ye. Dzyaloshinskii. 1965. Quantum Field Theoretical Problems In Statistical Mechanics. Pergamon Press Google Scholar
  3. 3.
    Altshuler, B.L. and A.G. Aronov. 1979. Contribution to the theory of disordered metals in strongly doped semiconductors. JETP 50: 968 ADSGoogle Scholar
  4. 4.
    Altshuler, B.L., A.G. Aronov and P.A. Lee. 1980. Interaction effects in disordered Fermi systems in two dimensions. Phys. Rev. Lett. 44: 1288 ADSCrossRefGoogle Scholar
  5. 5.
    Altshuler, B.L., A.G. Aronov. 1983. Fermi-liquid of the electron-electron interaction effects in disordered metals. Solid State Commun. 46: 429 ADSCrossRefGoogle Scholar
  6. 6.
    Andergassen, S., S. Caprara, C. Di Castro and M. Grilli. 2001. Anomalous isotopic effect near the charge-ordering quantum criticality. Phys. Rev. Lett. 87: 056401 ADSCrossRefGoogle Scholar
  7. 7.
    Anderson, P.W. 1958. Absence of diffusion in certain random lattices. Phys. Rev. 109: 1492 ADSCrossRefGoogle Scholar
  8. 8.
    Anderson, P.W. 1987. The Resonating Valence Bond State in La2CuO4 and Superconductivity. Science 235: 1196 ADSCrossRefGoogle Scholar
  9. 9.
    Anderson, P.W. 1990a. Luttinger-liquid behavior of the normal metallic state of 2D Hubbard model. Phys. Rev. Lett. 64: 1839 ADSCrossRefGoogle Scholar
  10. 10.
    Anderson, P.W. 1990b. Singular forward scattering in the 2D Hubbard model and a renormalised Bethe Ansatz ground state. Phys. Rev. Lett. 65: 2306 ADSCrossRefGoogle Scholar
  11. 11.
    Bardeen, J., L.R. Cooper and R. Schrieffer. 1957. Theory of superconductivity, Phys. Rev. 108: 1175 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Bednorz, J.G. and K.A. Müller. 1986. Possible high-Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64: 189 ADSCrossRefGoogle Scholar
  13. 13.
    Berenson, B. 1948. I pittori italiani del Rinascimento. Hoepli, Milano Google Scholar
  14. 14.
    Bogolyubov, N. 1947. On the theory of superfluidity, J. Phys. (Moscow) 11: 23 MathSciNetGoogle Scholar
  15. 15.
    Bogolyubov, N. and P.V. Shirkov. 1959. Introduction to the Theory of Quantized Fields. Interscience Publishers, New York Google Scholar
  16. 16.
    Bonch-Bruevich, V.L. and S.V. Tyablikov. 1962. The Green Function Method in Statistical Mechanics. North-Holland, Amsterdam Google Scholar
  17. 17.
    Brezin, E., J.C. Le Guillou and J. Zinn-Justin. 1973. Wilson’s theory of critical phenomena and Callan-Symanzik equations in 4-ϵ dimensions. Phys. Rev. D 8: 434 ADSCrossRefGoogle Scholar
  18. 18.
    Cancrini, N., S. Caprara, C. Castellani, C. Di Castro, M. Grilli and R. Raimondi. 1991. Phase separation and superconductivity in Kondo-like spin-hole coupled model. Europhys. Lett. 14: 597 ADSCrossRefGoogle Scholar
  19. 19.
    Castellani, C. and C. Di Castro. 1979a. Arbitrariness and symmetry properties of the functional formulation of the Hubbard hamiltonian. Phys. Lett. A 70: 37 ADSCrossRefGoogle Scholar
  20. 20.
    Castellani, C., C. Di Castro, D. Feinberg and J. Ranninger. 1979b. A new model Hamiltonian for the metal-insulator transition. Phys. Rev. Lett. 43: 1957 ADSCrossRefGoogle Scholar
  21. 21.
    Castellani, C., C. Di Castro and J. Ranninger. 1982. Decimation approach in quantum systems. Nucl. Phys. B 200: 45 ADSCrossRefGoogle Scholar
  22. 22.
    Castellani, C., C. Di Castro, G. Forgacs and E. Tabet. 1983. Towards a microscopic theory of the metal-insulator transition. Nucl. Phys. B 225: 441 ADSCrossRefGoogle Scholar
  23. 23.
    Castellani, C., C. Di Castro, P.A. Lee and M. Ma. 1984a. Interaction driven metal-insulation transitions in disordered fermions. Phys. Rev. B 30: 527 ADSCrossRefGoogle Scholar
  24. 24.
    Castellani, C., C. Di Castro, P.A. Lee, M. Ma, S. Sorella and E. Tabet. 1984b. Spin fluctuations in disordered interacting electrons. Phys. Rev. B 30: 1596 ADSCrossRefGoogle Scholar
  25. 25.
    Castellani, C., C. Di Castro, G. Forgacs and S. Sorella. 1984c. Spin-orbit coupling in disordered interacting electron gas. Solid State Commun. 52: 261 ADSCrossRefGoogle Scholar
  26. 26.
    Castellani, C. and C. Di Castro. 1985. Metal-insulator transition and Landau Fermi liquid theory. In Localization and metalinsulator transitions. A Festschrift in honour of N.H. Mott, edited by H. Fritzsche and D. Adler. Plenum Publishing Corporation, New York, p. 215 Google Scholar
  27. 27.
    Castellani, C., C. Di Castro, P.A. Lee, M. Ma, S. Sorella and E. Tabet. 1986a. Enhancement of the spin susceptibility in disordered interacting electrons and the metal-insulator transition. Phys. Rev. B 33: 6169 ADSCrossRefGoogle Scholar
  28. 28.
    Castellani, C. and C. Di Castro. 1986b. Effective Landau theory for disordered interacting electron systems: specific heat behavior. Phys. Rev. B 34: 5935 ADSCrossRefGoogle Scholar
  29. 29.
    Castellani, C., C. Di Castro and P.A. Lee. 1988a. Metallic phase and metal-insulator transition in two-dimensional electronic systems. Phys. Rev. B 57: R9381 ADSCrossRefGoogle Scholar
  30. 30.
    Castellani, C., C. Di Castro and M. Grilli. 1988b.Possible occurrence of band interplay in high Tc superconductors. Proceeding of International Conference on High-Temperature Superconductors and Materials and Mechanisms of Superconductivity Part II, Interlaken, March 1988. Physica C 153-155: 1659 Google Scholar
  31. 31.
    Castellani, C., C. Di Castro and W. Metzner. 1994. Dimensional crossover from Fermi to Luttinger liquid. Phys. Rev. Lett. 72: 316 ADSCrossRefGoogle Scholar
  32. 32.
    Castellani, C., C. Di Castro and M. Grilli. 1995. Singular quasiparticle scattering in the proximity of charge instabilities. Phys. Rev. Lett. 75: 4650 ADSCrossRefGoogle Scholar
  33. 33.
    Castellani, C., C. Di Castro and M. Grilli. 1997a. Non-Fermi Liquid behaviour and d-wave superconductivity near the charge density wave quantum critical point. Zeit. Phys. B 103: 137 ADSCrossRefGoogle Scholar
  34. 34.
    Castellani, C., C. Di Castro, F. Pistolesi and G. Strinati. 1997b. Infrared behavior for interacting bosons at zero temperature. Phys. Rev. Lett. 79: 1612 ADSCrossRefGoogle Scholar
  35. 35.
    Castellani, C., C. Di Castro and M. Grilli. 1998. Stripe formation: A quantum critical point for cuprate superconductors. J. Phys. Chem. Solids 59: 1694 ADSCrossRefGoogle Scholar
  36. 36.
    Chang, J., E. Blackburn, A.T. Holmes, N.B. Christensen, J. Larsen, J. Mesot, R. Liang, D.A. Bonn, W.N. Hardy, A. Watenphul, M.V. Zimmermann, E.M. Forgan and S.M. Hayden. 2012. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8: 871 CrossRefGoogle Scholar
  37. 37.
    Chrétien, M.E., P. Gross and S. Deser (eds.). 1968. Statistical Physics, Phase Transitions and Superfluidity (Brandeis University Summer Institute in Theoretical Physics, 1966). Gordon and Breach, New York Google Scholar
  38. 38.
    Courant, R. and H. Robbins. 1950. Che cos’è la matematica? [original title: What is Mathematics?]. Einaudi, Torino Google Scholar
  39. 39.
    De Pasquale, F., C. Di Castro and G. Jona-Lasinio. 1971. Field theory approach to phase transitions. In Critical Phenomena (Course LI, Varenna), edited by M.S. Green, Academic Press, New York, p. 123 Google Scholar
  40. 40.
    Di Castro, C. and J.G. Valatin. 1964. Change of the energy gap with a magnetic field in superconducting films, Phys. Lett. 8: 230 ADSCrossRefGoogle Scholar
  41. 41.
    Di Castro, C. 1965. Lezioni di Fisica dei Superfluidi. Scuola di Perfezionamento in Fisica dell’Università di Roma Google Scholar
  42. 42.
    Di Castro, C. 1996. A phenomenological Model for Creation of Vortices by Ions in Liquid Helium II. Il Nuovo Cimento B 42: 251 CrossRefGoogle Scholar
  43. 43.
    Di Castro, C. and W. Young. 1969a. Density matrix methods and time dependence of order parameter in superconductors. Il Nuovo Cimento B 62: 273 ADSCrossRefGoogle Scholar
  44. 44.
    Di Castro, C. and G. Jona-Lasinio. 1969b. On the Microscopic Foundation of Scaling Laws. Phys. Lett. A 29: 322 ADSCrossRefGoogle Scholar
  45. 45.
    Di Castro, C., C.F. Ferro-Luzzi and J.A. Tyson. 1969c. Dynamical scaling laws and time dependent Landau-Ginzburg equation, Phys. Lett. A 29: 458 ADSCrossRefGoogle Scholar
  46. 46.
    Di Castro, C. 1972. The multiplicative renormalization group and the critical behavior in d = 4ϵ dimensions. Lettere al Nuovo Cimento 5: 69 CrossRefGoogle Scholar
  47. 47.
    Di Castro, C. 1974a. Unified derivation of scaling from renormalization group and thermodynamic functionals. In Renormalization Group in Critical Phenomena and Quantum Field Theory, edited by J.D. Gunton and M.S. Green, Conference held at Chestnut Hill, Pennsylvania, 29–31 May 1973, Temple University, Philadelphia, pp. 148-156 Google Scholar
  48. 48.
    Di Castro, C., G. Jona-Lasinio and L. Peliti. 1974b. Variational principles, renormalization group and Kadanoff’s universality. Ann. Phys. 87: 327 ADSCrossRefGoogle Scholar
  49. 49.
    Di Castro, C. and G. Jona-Lasinio. 1976. The renormalization group approach to critical phenomena. In Phase transitions and critical phenomena, edited by C. Domb and M.S. Green, Vol. 6. Academic Press, London, pp. 507–558 Google Scholar
  50. 50.
    Di Castro, C. 1981. A new model Hamiltonian for a correlated electron system within the general framework of critical phenomena and phase transitions. In Perspectives in statistical mechanics, edited by H.J. Raveché. North Holland, Amsterdam, p. 139 Google Scholar
  51. 51.
    Di Castro, C. 1988. Renormalized Fermi liquid theory for disordered electron systems and the metal-insulator transition. In Anderson Localization. International Symposium, Tokyo 16–18 August 1987, edited by T. Ando and H. Fukuyama. Springer Verlag, Berlin, p. 96 Google Scholar
  52. 52.
    Di Castro, C. and W. Metzner. 1991. Ward Identities and the beta-function in the Luttinger liquid. Phys. Rev. Lett. 67: 3852 ADSCrossRefGoogle Scholar
  53. 53.
    Di Castro, C., R. Raimondi and S. Caprara. 2004. Renormalization group and Ward Identities in quantum liquid phases and in unconventional critical phenomena. J. Stat. Phys. 115: 91 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Dirac, P.A.M. 1959. I principi della meccanica quantistica [original title: The Principles of Quantum Mechanics]. Boringhieri, Torino Google Scholar
  55. 55.
    Domb, C. and M. Green (eds.). 1976. Phase Transitions and Critical Phenomena. Academic Press, London Google Scholar
  56. 56.
    Dzyaloshinskii, I.E. and A.I. Larkin. 1974. Correlation functions for a one-dimensional Fermi system with long-range interaction (Tomonaga model). Sov. Phys. J. Exp. Theor. Phys. 38: 202 ADSGoogle Scholar
  57. 57.
    Emery, V.J., S.A. Kivelson and H.Q. Lin. 1990. Phase separation in the t-J model. Phys. Rev. Lett. 64: 475 ADSCrossRefGoogle Scholar
  58. 58.
    Finkel’stein, A.M. 1983. Influence of Coulomb interaction on the properties of disordered metals. Sov. Phys. J. Exp. Theor. Phys. 57: 97 Google Scholar
  59. 59.
    Finkel’stein, A.M. 1984a. Weak localization and coulomb interaction in disordered systems. Z. Phys. B 56: 189 ADSCrossRefGoogle Scholar
  60. 60.
    Finkel’stein, A.M. 1984b. Metal-insulator transition in a disordered system. Sov. Phys. J. Exp. Theor. Phys. 59: 212 Google Scholar
  61. 61.
    Gavoret, J. and P. Nozières. 1964. Structure of the perturbation expansion for the Bose liquid at zero temperature. Ann. Phys. 28: 349 ADSCrossRefGoogle Scholar
  62. 62.
    Gell-Man, M. and F.E. Low. 1954. Quantum Electrodynamics at Small Distances. Phys. Rev. 95: 1300 ADSCrossRefGoogle Scholar
  63. 63.
    Georges, A., G. Kotliar, W. Krauth and M. Rozenberg. 1996. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68: 13 ADSCrossRefMathSciNetGoogle Scholar
  64. 64.
    Ghiringhelli, G., M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N.B. Brookes, G.M. De Luca, A. Frano, D.G. Hawthorn, F. He, T. Loew, M. Moretti Sala, D.C. Peets, M. Salluzzo, E. Schierle, R. Sutarto, G.A. Sawatzky, E. Weschke, B. Keimer and L. Braicovich. 2012. Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba2Cu3O6+x. Science 337: 821 ADSCrossRefGoogle Scholar
  65. 65.
    Girardeau, M. and R. Arnowitt. 1959. Theory of many-boson system: pair theory. Phys. Rev. 113: 755 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  66. 66.
    Gorkov, L.P., A.I. Larkin and D.E. Khmelnitskii. 1979. Particle conductivity in a two-dimensional random potential. J. Exp. Theor. Phys. Lett. 30: 228 Google Scholar
  67. 67.
    Green, M.S. (ed.). 1971. Critical Phenomena (Course LI, Varenna). Academic Press, New York Google Scholar
  68. 68.
    Grest, G.S. and P.A. Lee. 1983. Scaling theory of disordered fermions. Phys. Rev. Lett. 50: 693 ADSCrossRefGoogle Scholar
  69. 69.
    Grilli, M., R. Raimondi, C. Castellani, C. Di Castro and G. Kotliar. 1991. Phase separation and superconductivity in the U = infinite limit of the extended multiband Hubbard model. Int. J. Mod. Phys. B 5: 309 ADSCrossRefGoogle Scholar
  70. 70.
    Gunton, J.D. and M.S. Green (eds.). 1974. Renormalization Group in Critical Phenomena and Quantum Field Theory, Conference held at Chestnut Hill, Pennsylvania, 29–31 May 1973. Temple University, Philadelphia Google Scholar
  71. 71.
    Huang, K. and A.C. Olinto. 1965. Phys. Rev. A 139: 1441 ADSCrossRefGoogle Scholar
  72. 72.
    Jeans, J. 1933. The mysterious universe. Cambridge University Press, Cambridge Google Scholar
  73. 73.
    Kadanoff, L.P. 1966. Scaling laws for Ising models near T c. Physics 2: 263 Google Scholar
  74. 74.
    Kadanoff, L.P., W. Gotze, D. Hamblen, R. Hecht, E.A.S. Lewis, V.V. Palciauskas, M. Rayl, J. Swift, D. Aspnes and J.W. Kane. 1967. Static phenomena near critical points: theory and experiment. Rev. Mod. Phys. 39: 395 ADSCrossRefGoogle Scholar
  75. 75.
    Kravchenko, S.V., W.E. Mason, G.E. Bowker, J.E. Furneaux, V.M. Pudalov, M. D’Iorio. 1995. Scaling of an anomalous metal-insulator transition in a two-dimensional system in silicon at B = 0. Phys. Rev. B 51: 7038 ADSCrossRefGoogle Scholar
  76. 76.
    Kravchenko, S.V., D. Simonian, M.P. Sarachik, W. Mason and J.E. Furneaux. 1996. Electric Field Scaling at a B = 0 Metal-Insulator Transition in Two Dimensions. Phys. Rev. Lett. 77: 4938 ADSCrossRefGoogle Scholar
  77. 77.
    Kravchenko, S.V. and M. Sarachik. 2004. Metal-insulator transition in two-dimensional electron systems. Rep. Prog. Phys. 67: 1 ADSCrossRefGoogle Scholar
  78. 78.
    Landau, L.D. 1937a. Theory of phase transformations. I. Zh. Exsp. Teor. Fiz. 7: 19; Phys. Z. Sowjetunion 11: 26 Google Scholar
  79. 79.
    Landau, L.D. 1937b. Theory of phase transformations. II. Zh. Exsp. Teor. Fiz. 7: 627; Phys. Z. Sowjetunion 11: 545 Google Scholar
  80. 80.
    Landau, L.D. 1941. The theory of superfluid helium II. J. Phys. USSR 5: 71 Google Scholar
  81. 81.
    Landau, L.D. 1947. On the theory of superfluidity of helium II. J. Phys. USSR 11: 91 Google Scholar
  82. 82.
    Landau, L.D. 1957. The Theory of Fermi Liquids. Zh. Exsp. Teor. Fiz. 30: 1058 (1956); Sov. Phys. J. Exp. Theor. Phys. 3: 920 Google Scholar
  83. 83.
    Landau, L.D. 1958. On the theory of Fermi liquid. Zh. Exsp. Teor. Fiz. 35: 97; Sov. Phys. J. Exp. Theor. Phys. 8: 70 (1959) Google Scholar
  84. 84.
    Longhi, R. 1946. Piero Della Francesca. Hoepli, Milano Google Scholar
  85. 85.
    Löw, U., V.J. Emery, K. Fabricius, and S.A. Kivelson. 1994. Study of an Ising model with competing long- and short-range interactions. Phys. Rev. Lett. 72: 1918. ADSCrossRefGoogle Scholar
  86. 86.
    Metzner, W. and C. Di Castro. 1993. Conservation laws and correlation functions in the Luttinger liquid. Phys. Rev. B 47: 16107 ADSCrossRefGoogle Scholar
  87. 87.
    Metzner, W., C. Castellani and C. Di Castro. 1997. Fermi Systems with Strong Forward Scattering. Adv. Phys. 47: 317 CrossRefGoogle Scholar
  88. 88.
    Müller, K.A. and G. Benedeck (eds.). 1993. Phase separation in cuprate superconductors. Erice May 6–12, 1992. World Scientific, Singapore Google Scholar
  89. 89.
    Müller, K.A. and E. Sigmund (eds.). Phase separation in cuprate superconductors. Cottbus, September 4–10, 1993. Springer Verlag Google Scholar
  90. 90.
    Nambu, Y. and S.F. Tuan. 1964. Considerations on the Magnetic Field Problem in Superconducting Thin Films. Phys. Rev. A 133: 1 ADSCrossRefGoogle Scholar
  91. 91.
    Ortix, C., J. Lorenzana and C. Di Castro. 2006. Frustrated phase separation in two-dimensional charged systems. Phys. Rev. B 73: 245117 ADSCrossRefGoogle Scholar
  92. 92.
    Patashinkij, A.Z. and V.L. Pokrovskij. 1966. Behavior of Ordered Systems Near the Transition Point. Sov. Phys. J. Exp. Theor. Phys. 23: 292 ADSGoogle Scholar
  93. 93.
    Pines, D. 1961. The Many-Body Problem. W.A. Benjamin, New York Google Scholar
  94. 94.
    Pistolesi, F., C. Castellani, C. Di Castro and G.C. Strinati. 2004. Renormalization group approach to the infrared behavior of a zero-temperature Bose system. Phys. Rev. B 69: 024513 ADSCrossRefGoogle Scholar
  95. 95.
    Schrödinger, E. 1957. Statistical Thermodynamics. Cambridge University Press Google Scholar
  96. 96.
    Tranquada, J., B.J. Sternlieb, J.D. Axe, Y. Nakzmura and S. Uchida. 1995. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375: 561 ADSCrossRefGoogle Scholar
  97. 97.
    Wegner, F. 1976. Electrons in Disordered Systems. Scaling near the Mobility Edge. Z. Phys. B 25: 327 ADSCrossRefGoogle Scholar
  98. 98.
    Wilson, K.G. 1971a. Renormalization Group and critical phenomena. I. Renormalization Group and the Kadanoff scaling picture. Phys. Rev. B 4: 3174 ADSCrossRefzbMATHGoogle Scholar
  99. 99.
    Wilson, K.G. 1971b. Renormalization Group and critical phenomena. II. Phase-space cell analysis of critical behavior. Phys. Rev. B 4: 3184 ADSCrossRefzbMATHGoogle Scholar
  100. 100.
    Wilson, K.G. and M.E. Fisher. 1972a. Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28: 240 ADSCrossRefGoogle Scholar
  101. 101.
    Wilson, K.G. 1972b. Feynman-graph expansion for critical exponents. Phys. Rev. Lett. 28: 548 ADSCrossRefGoogle Scholar
  102. 102.
    Wilson, K.G. and J. Kogut. 1974. The renormalization group and the ϵ-expansion. Phys. Rep. 12: 75 ADSCrossRefGoogle Scholar
  103. 103.
    Wilson, K.G. 1983. The Renormalization Group and Critical Phenomena. Rev. Mod. Phys. 55: 583 ADSCrossRefGoogle Scholar
  104. 104.
    Wu, T., H. Mayaffre, S. Krämer, M. Horvatic, C. Berthier, W.N. Hardy, R. Liang, D.A. Bonn and M.-H. Julien. 2001. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature 477: 191 ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Physics Department, Università di Roma “Sapienza”RomeItaly
  2. 2.Max Planck Institute for the History of ScienceBerlinGermany

Personalised recommendations