The European Physical Journal H

, Volume 38, Issue 5, pp 661–702 | Cite as

Reflections on the four facets of symmetry: how physics exemplifies rational thinking

  • Amaury MouchetEmail author


In contemporary theoretical physics, the powerful notion of symmetry stands for a web of intricate meanings among which I identify four clusters associated with the notion of transformation, comprehension, invariance and projection. While their interrelations are examined closely these four facets of symmetry are scrutinised one after the other in great detail. This decomposition allows us to carefully examine the multiple different roles symmetry plays in many places in physics. Furthermore, some connections with other disciplines like neurobiology, epistemology, cognitive sciences and, not least, philosophy are proposed in an attempt to show that symmetry can be an organising principle also in these fields.


Equivalence Class Algebraic Representation Active Point Catastrophe Theory Rational Thinking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aristotle 1938. Categories. On interpretation. Prior analytics. Loeb classical library, Harvard university press, Cambridge. Bilingual edition commented an translated from the Greek by Harold P. Cooke and Hugh Tredennick. Google Scholar
  2. Arnold, V.I. 1984. Catastrophe Theory, Springer-Verlag, New York.Google Scholar
  3. Auger, P. 1952. L’homme microscopique. Flammarion, Paris. 1966 for the 2nd edition.Google Scholar
  4. Auletta, G. 2006. The controversial relationships between science and philosophy: a critical assessment. Libreria Editrice Vaticana, Vatican City.Google Scholar
  5. Avramides, A. 2001. Other minds. The problems of philosophy, Routledge, New York.Google Scholar
  6. Baars, B.J. and N.M. Gage. 2010. Cognition, brain, and consciousness. Introduction to cognitive neuroscience. Academic Press, Burlington. 2nd edition.Google Scholar
  7. Barchielli, A. and M. Gregoratti. 2009. Quantum Trajectories and Measurements in Continuous Time. The diffusive Case. Lecture Notes in Physics, Vol. 782. Springer, Dordrecht.Google Scholar
  8. Batterman, R.W. 2011. Emergence, singularities, and symmetry breaking. Found. Phys. 41(6): 1031–1050.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. Bedau, M.A. and P. Humphreys. 2008. Emergence: Contemporary readings in philosophy and science. a Bradford book, The MIT Press, Cambridge.Google Scholar
  10. Belot, G. 2003. Notes on symmetries, in: Brading/Castellani03a. pp. 393–412. Chap. 24.Google Scholar
  11. Binétruy, P. 2006. Supersymmetry. Theory, experiment, and cosmology. Oxford University Press, Oxford.Google Scholar
  12. Birkhoff, G.D. 1933. Aesthetic measure. Harvard University Press, Cambridge. See also Birkhoff56a.Google Scholar
  13. Birkhoff, G.D. 1956. Mathematics of aesthetics, in: Newman, J.R. (Ed.), The world of mathematics, Dover Publications, Inc., New York, Vol. 4, part XXI. pp. 2185–2195.Google Scholar
  14. Bokulich, A. and P. Bokulich (Eds.) 2010. Scientific structuralism. volume 281, Boston Studies in the Philosophy of Science. Springer, Dordrecht.Google Scholar
  15. Borges, J.L. 1942. Ficciones. Grove Press, New York. Translated from the original Spanish by Anthony Bonner and edited by Anthony Kerrigan (1962).Google Scholar
  16. Born, M. 1953. Physical reality. Philos. Quart. 3: 139–149. Reproduced as chap. 9 of Castellani98a.CrossRefGoogle Scholar
  17. Bostrom, N. 2002. Anthropic Bias: Observation Selection Effects in Science and Philosophy (Studies in Philosophy). Routledge, New York. Google Scholar
  18. Boswell, J. 1791/2008. The Life of Samuel Johnson. Penguin Classics, Penguin Books, London. Edited by David Womersley.Google Scholar
  19. Bourbaki, N. 1968. Theory of sets. Elements of mathematics, Hermann, Paris. Translated from the French original edition Théorie des ensembles.Google Scholar
  20. Boussinesq, J. 1877. Sur la conciliation de la liberté morale avec le déterminisme scientifique. C. R. Acad. Sci. 84: 362–364. Note by Adhémar-Jean-Claude Barré de Saint-Venant on the work reedited in Boussinesq22a. Available on URLzbMATHGoogle Scholar
  21. Boussinesq, J. 1922. Cours de physique mathématiques de la faculté des sciences. Complément au tome III, Conciliation du véritable déterminisme mécanique avec l’existence de la vie et de la liberté morale. Gauthier-Villars, Paris. Available on
  22. Brading, K. and H.R. Brown. 2004. Are gauge symmetry transformations observable? British J. Philos. Sci. 55: 645–665.CrossRefMathSciNetGoogle Scholar
  23. Brading, K. and E. Castellani. 2003. Symmetries in physics. Philosophical reflections. Cambridge University Press.Google Scholar
  24. Breuer, H.P. and F. Petruccione. 2002. The theory of open quantum systems. Oxford University Press, Oxford.Google Scholar
  25. Bricmont, J. and A.P. Sokal. 2001. Defense of a modest scientific realism, in: Knowledge and the world. Challenges beyond the science wars, Springer, Berlin. pp. 17–45.Google Scholar
  26. Brink, D.M. 1965. Nuclear forces. The Commonwealth and international library. Selected readings in physics. Pergamon Press, Oxford, Vol. 354.Google Scholar
  27. Brown, J.H. and G.B. West. 2000. Scaling in Biology. Oxford University Press, Oxford.Google Scholar
  28. Bruno, G. 1584/1995. La cena de le ceneri – The ash wednesday supper. Renaissance Society of America. University of Toronto Press, Toronto, Vol. 4. Translated from the original Italian by Edward A. Gosselin and Lawrence S. Lerner.Google Scholar
  29. Butterfield, J. 2005. On the persistence of particles. Found. Phys. 35: 233–269.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. Butterfield, J. 2011. Less is different: Emergence and reduction reconciled. Found. Phys. 41 (6): 1065–1135.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. Butterworth, B. 1999. The mathematical brain. Macmillan, London. US edition (Free Press) is entitled: What counts. How every brain is hardwired for math.Google Scholar
  32. Campbell, D.T. 1959. Methodological suggestions from a comparative psychology of knowledge processes. Inquiry 2: 152–182.CrossRefGoogle Scholar
  33. Campbell, D.T. 1960. Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review 67: 380–400. Reprinted as chap. III of Radnitzky/Bartley87a.CrossRefGoogle Scholar
  34. Campbell, D.T. 1974. Evolutionary epistemology, in: Schilpp P.A. (Ed.), The philosophy of Karl Popper, Open Court, La Salle, Illinois. pp. 413–463. Reprinted as chap. II of Radnitzky/Bartley87a. For an updated account of Campbell’s influence see Heyes/Hull01a.Google Scholar
  35. Carnap, R. 1966. Philosophical foundations of physics. An introduction to the philosophy of science. Basic Books Inc., New York. Google Scholar
  36. Cassirer, E. 1938. Le concept de groupe et la théorie de la perception. Journal de Psychologie normale et Pathologique 35: 368–414.Google Scholar
  37. Cassirer, E. 1944. The concept of group and the theory of perception. Philosophy and phenomenological research V, 1–36. Translated by Aron Gurwitsch from the original French Cassirer38a.Google Scholar
  38. Castellani, E. (Ed.). 1998. Interpreting bodies. Classical and quantum objects in modern physics, Princeton University Press, Princeton. Google Scholar
  39. Castellani, E. 2002. Reductionism, emergence and effective field theories. Stud. Hist. Philos. Mod. Phys. 33: 251–267.CrossRefzbMATHMathSciNetGoogle Scholar
  40. Castellani, E. 2003. Symmetry and equivalence, in: Brading/Castellani03a. pp. 425–436. Chap. 26.Google Scholar
  41. Chandrasekhar, S. 1987. Truth and beauty. Aesthetics and motivations in science. The University of Chicago Press, Chicago. Google Scholar
  42. Changeux, J.P. 1985. Neuronal man. The biology of mind. Princeton University Press, Princeton. Translation by Laurence Garey from the French original edition L’homme neuronal (1983, Fayard).Google Scholar
  43. Changeux, J.P. 2002. The physiology of truth. Neuroscience and human knowledge (mind/brain/behaviour initiative). Belknap Press of Harvard University Press, Cambridge. Translation by M. B. DeBevoise from the French original edition L’homme de vérité (Odile Jacob).Google Scholar
  44. Changeux, J.P. 2012. The Good, the True, and the Beautiful: A Neuronal Approach. Yale University Press, New haven and London. Translated and revised by Laurence Garey from the French original edition Du vrai, du beau, du bien: une nouvelle approche neuronale (2008, Odile Jacob).Google Scholar
  45. Changeux, J.P., P. Courrège and A. Danchin. 1973. A theory of the epigenesis of neuronal networks by selective stabilization of synapses. Proc. Natl. Acad. Sci. USA 70: 2974–2978. ADSCrossRefzbMATHGoogle Scholar
  46. Choquet-Bruhat, Y. and C. DeWitt-Morette. 1982. Analysis, manifolds and physics. Elsevier science, Amsterdam. Revised Edition (Part I). Google Scholar
  47. Clark, A. 2008. Supersizing the mind. Embodiment, action, and cognitive extension. Oxford University Press, Oxford.Google Scholar
  48. Cornwell, J.F. 1984. Group theory in physics. Academic Press, London, Vol. 2.Google Scholar
  49. Cournot, A.A. 1851/1956. An Essay on the foundations of our knowledge. The Liberal Arts Press, New York. Translated by Merritt H. Moore from the original French Essai sur les fondements de nos connaissances et sur les caractères de la critique philosophique available on
  50. Cournot, A.A. 1861. Traité de l’enchaînement des idées fondamentales dans les sciences et dans l’histoire. Hachette, Paris. Available on
  51. Curie, P. 1894. Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. de Physique (3ème série) III: 393–415. Available on English translation in [pp. 17–25]Rosen82a.Google Scholar
  52. Curtin, D.W. 1980. The aesthetic dimension of science. Nobel Conference, Philosophical library, New York.Google Scholar
  53. Cusa, N. 1440/1985. On learned ignorance. A translation and an appraisal of De Docta Ignorantia. Arthur J. Banning Press, Minneapolis. Translated from the original Latin by Germain Heron.Google Scholar
  54. Dawkins, R. 1976. The selfish gene. Oxford University Press, Oxford.Google Scholar
  55. Debs, T.A. and M. Redhead. 2007. Objectivity, invariance, and convention. Symmetry in physical science. Harvard University Press, Cambridge.Google Scholar
  56. Dehaene, S. 1997. The number sense. How the mind creates mathematics. Oxford University Press, Oxford.Google Scholar
  57. Delahaye, J.P. 1999. Information, complexité et hasard. Hermès Science Publications, Paris.Google Scholar
  58. Demazure, M. 2000. Bifurcations and catastrophes. Geometry of solutions to nonlinear problems, Universitext, Springer, Berlin. Translated by David Chillingworth from the French edition Catastrophes et bifurcations (Ellipses, 1989). Google Scholar
  59. Dennett, D.C. 1996. Kinds of minds. Toward an understanding of consciousness. Science Masters Series, Basic Books, New York. Google Scholar
  60. Dirac, P.A.M. 1926. On the theory of quantum mechanics. Proc. Roy. Soc. London Ser. A 112: 661–677. ADSCrossRefzbMATHGoogle Scholar
  61. Dirac, P.A.M. 1930. A theory of electrons and protons. Proc. Roy. Soc. London Ser. A 126: 360–365. ADSCrossRefzbMATHGoogle Scholar
  62. Dirac, P.A.M. 1963. The evolution of the physicist’s picture of nature. Sci. Amer. 208: 45–53.ADSCrossRefGoogle Scholar
  63. Dirac, P.A.M. 1982. Pretty mathematics. Int. J. Theoret. Phys. 21: 603–605.CrossRefMathSciNetGoogle Scholar
  64. Duck, I. and E.C.G. Sudarshan. 1997. Pauli and the spin-statistics theorem. World Scientific, Singapore.Google Scholar
  65. Duhem, P. 1906/1954. The aim and structure of physical theory. Princeton University Press, Princeton. Translated by Philip P. Wiener from the French original edition La théorie physique, son objet, sa structure (Chevalier et Rivière, 1906).Google Scholar
  66. Edelman, G.M. 1978. Group selection and phasic reentrant signalling: a theory of higher brain function, in: Edelman, G.M. and V.B. Mountcastle (Eds.), Mindful brain. Cortical organization and the group-selective theory of higher brain function, The MIT Press, Cambridge. p. 51.Google Scholar
  67. Edelman, G.M. 1987. Neural darwinism. The theory of neuronal group selection. Basic Books, New York.Google Scholar
  68. Edelman, G.M. 1992. Bright air, brilliant fire. On the matter of the mind. BasicBooks, New York.Google Scholar
  69. Edelman, G.M. 2006. Second nature. Brain science and human knowledge. Yale University Press, New Haven.Google Scholar
  70. Einstein, A. 1936. Physics and reality. J. Franklin Inst. 221: 349–382. Translated by Jean Piccard from the original german text, pp. 313–347. ADSCrossRefGoogle Scholar
  71. Einstein, A. 1949. Reply to criticisms, in: Schilpp, P.A. (Ed.), Albert Einstein: Philosopher scientist, Open Court, La Salle, Illinois. pp. 665–688.Google Scholar
  72. Esfeld, M. 2006. Scientific realism and the history of science, in: Auletta06a. pp. 251–275.Google Scholar
  73. Everett III, H. 1957. “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29: 454–462. Reproduced as Section II.3 of Wheeler/Zurek83a.ADSCrossRefMathSciNetGoogle Scholar
  74. Feigl, H. and G. Maxwell (Eds.). 1962. Scientific explanation, space, and time. volume III of Minnesota Studies in the Philosophy of Science, University of Minnesota press, Minneapolis.
  75. Feigl, H. and M. Scriven (Eds.) 1956. Foundations of science and the concepts of psychology and psychoanalysis. volume I of Minnesota Studies in the Philosophy of Science, University of Minnesota press, Minneapolis.
  76. Feynman, R.P., R.B. Leighton and M. Sands. 1970. The Feynman lectures on physics. Addison Wesley publishing company, Reading, Massachusetts.Google Scholar
  77. Fine, A. 1996. The shaky game. Einstein realism and the quantum theory. The University of Chicago Press, Chicago. 2nd edn. Google Scholar
  78. Fonda, L. and G.C. Ghirardi. 1970. Symmetry principles in quantum physics. Theoretical Physics, vol. 1, Marcel Dekker, New York. Google Scholar
  79. van Fraassen, B.C. 1989. Laws and symmetry. Oxford University Press, Oxford.Google Scholar
  80. Fresnel, A. 1818. Mémoire sur la diffraction de la lumière. Mem. Ac. sc. Inst. Fr. T5: 339–475, available at˙publi.htm URLGoogle Scholar
  81. Galilei, G. 1632. Dialogo sopra i due massimi sistemi del mondo. Le opere di Galileo Galilei, Edizione Nazionale, vol. VII (1897) under the direction of Antonio Favaro, G. Barbera, Firenze.Google Scholar
  82. Galilei, G. 1632/1981. Dialogue concerning the two chief world systems: Ptolemaic and Copernican. The Modern Library, New York. Translated from the original Italian by Stillman Drake.Google Scholar
  83. Gibbs, J.W. 1902/2010. Elementary principles in statistical mechanics: developed with especial reference to the rational foundation of thermodynamics. Cambridge University Press, Cambridge. Reprint of original 1902 edition. Google Scholar
  84. Giedymin, J. 1982. Science and Convention. Essays on Henri Poincaré’s Philosophy of Science and the Conventionalist Tradition. Foundations & Philosophy of Science & Technology, Pergamon Press, Oxford. Google Scholar
  85. Giedymin, J. 1992. Conventionalism, the pluralist conception of theories and the nature of interpretation. Stud. Hist. Philos. Sci. 23: 423–443.CrossRefMathSciNetGoogle Scholar
  86. Giulini, D., E. Joos, C. Kiefer, J. Kupsch, I.O. Stamatescu and H.D. Zeh. 2003. Decoherence and the Appearance of a Classical World in Quantum Theory. Springer-Verlag, Berlin. (2nd edition).Google Scholar
  87. Hacyan, S. 2009. Geometry as an object of experience: the missed debate between Poincaré and Einstein. Eur. J. Phys. 30: 337–343.CrossRefMathSciNetGoogle Scholar
  88. Hadamard, J. 1954. Essay on the psychology of invention in the mathematical field. Dover Publications, New York. Cambridge University Press (1945) for the original first edition.Google Scholar
  89. Haldane, J.B.S. 1927. Possible worlds and other essays. Chatto and Windus, London.Google Scholar
  90. Hamilton, W. 1861. Discussions on philosophy and literature. Harper and Brothers, New York.Google Scholar
  91. Hanson, N.R. 1958. Patterns of discovery. An inquiry into the conceptual foundations of science. Cambridge University Press, Cambridge. Google Scholar
  92. Hardy, G.H. 1940. A mathematician’s apology. Cambridge: University Press, Cambridge.
  93. Hartle, J.B. 2005. The physics of ‘Now’. Amer. J. Phys. 73: 101–109.ADSCrossRefGoogle Scholar
  94. Heisenberg, W. 1926. The many-body problem and resonance in quantum mechanic. Zts. f. Phys. 38: 411–426. English translation in Duck/Sudarshan97a pp. 115–125.ADSCrossRefzbMATHGoogle Scholar
  95. Heisenberg, W. 1927. The many-body problem and resonance in quantum mechanic II. Zts. f. Phys. 40: 239–267.ADSCrossRefGoogle Scholar
  96. Heisenberg, W. 1932. On the structure of atomic nuclei, I. Zts. f. Phys. 77: 1–11. English translation in Brink65a pp. 144–154.ADSCrossRefGoogle Scholar
  97. Heisenberg, W. 1958. Physics and philosophy. The revolution in modern science. volume 1958 of World perspectives. Harper and brothers, New York.Google Scholar
  98. Heisenberg, W. 1974. Across the frontiers. volume 1974 of World perspectives. Harper and Rows, New York.Google Scholar
  99. Henshilwood, C.S., F. d’Errico, R. Yates, Z. Jacobs, C. Tribolo, G.A.T. Duller, N. Mercier, J.C. Sealy, H. Valladas, I. Watts and A.G. Wintle. 2002. Emergence of modern human behavior: Middle stone age engravings from South Africa. Science 295: 1278–1280. ADSCrossRefGoogle Scholar
  100. Heyes, C.M. and D.L. Hull (Eds.) 2001. Selection theory and social construction. The evolutionary naturalistic epistemology of Donald T. Campbell. Suny Series in Philosophy and Biology, State University of New York Press, New York.Google Scholar
  101. Hon, G. and B.R. Goldstein. 2008. From summetria to symmetry: The making of a revolutionary scientific concept. Volume 20 of Archimedes. Springer.Google Scholar
  102. Houtappel, R.M.F., H. Van Dam and E.P. Wigner. 1965. The conceptual basis and use of the geometric invariance principles. Rev. Modern Phys. 37: 595–632.ADSCrossRefMathSciNetGoogle Scholar
  103. Hull, D.L. 2001. Science and Selection: Essays on Biological Evolution and the Philosophy of Science. Cambridge Studies in Philosophy and Biology, Cambridge University Press, Cambridge.Google Scholar
  104. Hume, D. 1758/1999. An enquiry concerning human understanding. Oxford Philosophical Texts, Oxford University Press, Oxford. Edited by Tom L. Beauchamp.Google Scholar
  105. Ismael, J. and B.C. van Fraassen. 2003. Symmetry as a guide to superfluous theoretical structure, in: Brading/Castellani03a. pp. 371–392. Chap. 23.Google Scholar
  106. James, W. 1880. Great men, great thoughts, and the environment. Atlantic Monthly 46: 441–459.Google Scholar
  107. Jammer, M. 1994. Concepts of space. The history of theories of space in physics. Dover Publications, New York.Google Scholar
  108. Jeffreys, H. 1931. Scientific inference. Cambridge University Press, Cambridge.Google Scholar
  109. Jones, H.F. 1998. Groups, representations and physics. Institute Of Physics Publishing, Bristol.Google Scholar
  110. Kadanoff, L.P. 2000. Statistical physics. Statics, dynamics and renormalization. World Scientific, Singapore.Google Scholar
  111. Kant, I. 1781/1998. Critique of pure reason. Cambridge University Press, Cambridge. Edited and translated by Paul Guyer and Allen W. Wood.Google Scholar
  112. Klein, F. 1893. A comparative review of recent researches in geometry. Bull. New York Math. Soc. 2: 215–249. Translated by M.W. Haskell from the German original (1872).CrossRefzbMATHGoogle Scholar
  113. Kosmann-Schwarzbach, Y. 2010. The Noether theorems. Invariance and conservation laws in the twentieth century (sources and studies in the history of mathematics and physical sciences). Springer. Translated by Bertram E. Schwarzbach from theFrench original edition (Les Éditions de l’École Polytechnique, 2004). Google Scholar
  114. Kosso, P. 2003. Symmetry, objectivity and design, in: Brading/Castellani03a. pp. 413–424. Chap 25.Google Scholar
  115. Laertius, D. 1925. Lives of eminent philosophers (Vol. 2, books 6–10). Loeb classical library, Harvard university press, Cambridge. Bilingual edition commented and translated from the Greek by R.D. Hicks.Google Scholar
  116. Landauer, R. 1967. Wanted: a physically possible theory of physics. IEEE Spectrum 4: 105–109.CrossRefGoogle Scholar
  117. Landauer, R. 1999. Information is a physical entity. Physica A 263: 63–67.ADSCrossRefMathSciNetGoogle Scholar
  118. Langevin, P. 1923. La physique depuis vingt ans. Gaston Douin, Paris.Google Scholar
  119. Laudan, L. 1981. A confutation of convergent realism. Philos. Sci. 48: 19–49. Reprinted as Chap. VI of Papineau96a.CrossRefGoogle Scholar
  120. Laudan, L. 1984. Realism without the real. Philos. Sci. 51: 156–162.CrossRefGoogle Scholar
  121. Laudan, L. 1990. Demystifying underdetermination, in: Savage90a. pp. 267–297. reproduced as Chap. 2 of Laudan96a.
  122. Laudan, L. 1996. Beyond positivism and relativism. Theory, method, and evidence. Westview Press, Boulder.Google Scholar
  123. Leff, H.S. and A.F. Rex (Eds.). 2003. Maxwell’s demon 2. Entropy, classical and quantum information, computing, Institute of Physics Publishing, Bristol.Google Scholar
  124. Lévi-Strauss, C. 1968. The savage mind. The University of Chicago Press, Chicago. Translated from the original French La pensée sauvage (Plon, 1962).Google Scholar
  125. Lewis, P.J. 2001. Why the pessimistic induction is a fallacy. Synthese 129: 371–380. CrossRefzbMATHMathSciNetGoogle Scholar
  126. Li, M. and P. Vitányi. 2008. An introduction to Kolmogorov complexity and its applications. Texts in Computer Science, Springer, New York. 3rd edition.Google Scholar
  127. Lipscomb, W.N. 1980. Aesthetic aspect of science, in: Curtin80a. pp. 1–24.Google Scholar
  128. Llinás, R.R. 2001. I of the vortex. From neurons to self. The MIT Press, Cambridge.Google Scholar
  129. Mach, E. 1906/1976. Knowledge and Error: Sketches on the Psychology of Enquiry. Vienna Circle Collection (Book 3) translated from the 5th edition of Erkenntnis und Irrtum from the German by T.J. McCormack and P. Foulkes. Reidel Publishing Compagny, Dordrecht.Google Scholar
  130. Machery, É. 2009. Doing without concepts. Oxford University Press, New York.Google Scholar
  131. Margolis, E. and S. Laurence. 2007. The ontology of concepts-abstract objects or mental representations? NOÛS 41: 561–593.CrossRefGoogle Scholar
  132. Maxwell, G. 1962. The ontological status of theoretical entities, in: Feigl/Maxwell62a. pp. 3–27.
  133. McAllister, J.W. 1996. Beauty and revolution in science. Cornell University Press, Ithaca.Google Scholar
  134. Moriyasu, K. 1983. An elementary primer for gauge theory. World Scientific, Singapore.Google Scholar
  135. Morrison, P. 1995. Nothing is too wonderful to be true. volume 11 of Masters of Modern Physics. American Institute of Physics Press, New York.Google Scholar
  136. Mouchet, A. 2013a. An alternative proof of Wigner theorem on quantum transformations based on elementary complex analysis. Phys. Lett. A 377: 2709–2711. ADSCrossRefGoogle Scholar
  137. Mouchet, A. 2013b. L’élégante efficacité des symétries. UniverSciences, Dunod, Paris.Google Scholar
  138. Murphy, G.L. 2002. The big book of concepts. The MIT Press, Cambridge.Google Scholar
  139. von Neumann, J. 1932/1955. Mathematical foundations of quantum mechanics. Princeton University Press, Princeton. Translated by Robert T. Beyer from the original German edition (1932).Google Scholar
  140. Nozick, R. 2001. Invariances. The structure of the objective world. The Belknap Press of Harvard university press, Cambridge. Google Scholar
  141. Papineau, D. 1996. The philosophy of science. Oxford Readings in Philosophy, Oxford University Press, Oxford.Google Scholar
  142. Penrose, R. 1974. The rôle of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10: 266–271.Google Scholar
  143. Penrose, R. 1980. On schwarzschild causality – a problem for “lorentz covariant” general relativity, in: Tipler, F.J. (Ed.), Essays in general relativity: a festschrift for Abraham Taub, Academic Press, New York. pp. 1–12. Google Scholar
  144. Penrose, R. 1997. The large, the small and the human mind. Cambridge University Press, Cambridge.Google Scholar
  145. Platek, S.M., J.P. Keenan and T.K. Shackelford. 2007. Evolutionary cognitive neuroscience. The MIT Press, Cambridge.Google Scholar
  146. Poincaré, H. 1891. Les géométries non euclidiennes. Rev. Gén. Sci. Pur. Appl 2: 769–774. Reproduced with modifications in chap. III of Poincare52a and the section Geometry and astronomy is reproduced in Chap. V. Google Scholar
  147. Poincaré, H. 1895. L’espace et la géométrie. Revue de métaphysique et de morale 3: 631–646. Reproduced with modifications in Chap. IV of Poincare52a.Google Scholar
  148. Poincaré, H. 1900a. Les relations entre la physique expérimentale et la physique mathématique. Rev. Gén. Sci. Pur. Appl. 11: 1163–1175. English translation in Poincare1900b.Google Scholar
  149. Poincaré, H. 1900b. The relations between experimental and mathematical physics. Sci. Amer. 83: 282. Reproduced in chapters IX et X of Poincare52a.Google Scholar
  150. Poincaré, H. 1902. Sur la valeur objective de la science. Revue de métaphysique et de morale 10: 263–293. Reproduced as chap. X and XI of Poincare58a.Google Scholar
  151. Poincaré, H. 1903. L’espace et ses trois dimensions. Revue de métaphysique et de morale 11: 281–301. Reproduced as chap. III of Poincare58a.Google Scholar
  152. Poincaré, H. 1908. L’invention mathématique. Bulletin de l’institut général psychologique 8ième anné e, mai-juin (3): 4–15. Reproduced as chap. III of Poincare59a.Google Scholar
  153. Poincaré, H. 1911. L’Évolution des lois. Scientia (Rivista di Scienza) 9: 275–292, reproduced as Chap. I of (Poincaré, yearPoincare1913) without the Section on differential equations.zbMATHGoogle Scholar
  154. Poincaré, H. 1913. Dernières pensées. Flammarion, Paris, available at
  155. Poincaré, H. 1952. Science and hypothesis. Dover Publications, Inc., New York. Translated by W.J. Greenstreet from the French La science et l’hypothèse (Flammarion, 1902).Google Scholar
  156. Poincaré, H. 1958. The Value of Science. Dover Publications, Inc., New York. Translated by George Bruce Halsted from the French La valeur de la science (Flammarion, 1905).Google Scholar
  157. Poincaré, H. 1959. Science and method. Dover Publications, Inc., New York. Translated by Francis Maitland from the French Science et méthode (Flammarion, 1908).Google Scholar
  158. Popper, K. 1959. The logic of scientific discovery. Routledge, London.Google Scholar
  159. Popper, K. 1969. Conjectures and refutations. The growth of scientific knowledge. Routledge, London. 3rd edition.Google Scholar
  160. Popper, K. 1978. Natural selection and the emergence of mind. Dialectica 32: 339–355.CrossRefGoogle Scholar
  161. Popper, K. 1979. Objective knowledge. An evolutionary approach. Oxford University Press, Oxford. Revised edition of the original edition (1972).Google Scholar
  162. Poston, T. and I. Stewart. 1978. Catastrophe theory and its applications, Pitman, London, p. 5166.Google Scholar
  163. Presilla, C., R. Onofrio and U. Tambini. 1996. Measurement quantum mechanics and experiments on quantum zeno effect. Ann. Physics 248: 95–121.ADSCrossRefMathSciNetGoogle Scholar
  164. Psillos, S. 1999. Scientific realism. How science tracks truth. Routledge, London.Google Scholar
  165. Putnam, H. 1975. Mathematics, matter and method. Philosophical Papers. Cambridge University Press, Cambridge. 2nd edn., Vol. 1.Google Scholar
  166. Putnam, H. 1978. Meaning and the moral sciences. Routledge and Kegan Paul, London.Google Scholar
  167. Radnitzky, G. and W.W. Bartley. 1987. Evolutionary epistemology, rationality, and the sociology of knowledge. Open Court Publishing Company, Peru.Google Scholar
  168. Reichenbach, H. 1938. Experience and prediction. An analysis of the foundations and the structure of knowledge. The University of Chicago Press, Chicago.Google Scholar
  169. Rosch, E. 1978. Principles of categorization, in: Rosch, E. and B.L. Lloyd (Eds.), Cognition and Categorization, Lawrence Erlbaum Associates, Hillsdale. pp. 27–48.Google Scholar
  170. Rosen, J. 1982. Symmetry in physics. Selected reprints. American Association of Physics Teachers, Melville.Google Scholar
  171. Russell, B. 1917. Mysticism and logic, and other essays. George Allen and Unwin, London. Original publication in New Quaterly (November 1907).Google Scholar
  172. Russell, B. 1919. Introduction to mathematical philosophy. George Allen and Unwin, London. Republished by Dover (1993).Google Scholar
  173. Sankey, H. 2001. Scientific realism: An elaboration and a defence. Theoria 98: 35–54. Reproduced in Chap. 1 of Sankey08a.CrossRefGoogle Scholar
  174. Sankey, H. 2008. Scientific Realism and the Rationality of Science. Ashgate, Burlington.Google Scholar
  175. Savage, C.W. (Ed.). 1990. Scientific theories. volume XIV of Minnesota Studies in the Philosophy of Science, University of Minnesota press, Minneapolis.
  176. Schlosshauer, M. 2007. Decoherence and the quantum-to-classical transition. The frontiers collection, Springer, Berlin. Google Scholar
  177. Schrödinger, E. 1944. What is life. Cambridge University Press, Cambridge.Google Scholar
  178. Segerstråle, U. 2000. Defenders of the Truth. The battle for science in the sociobiology debate and beyond. Oxford University Press, Oxford. Google Scholar
  179. Sellars, W. 1956. Empiricism and the philosophy of mind, in: Feigl/Scriven56a. pp. 253–329. reprinted as Chap. 5 of Sellars91a.
  180. Sellars, W. 1991. Science, perception and reality. Ridgeview Publishing Compagny, Atascadero.Google Scholar
  181. Seth, A.K. and B.J. Baars. 2005. Neural Darwinism and consciousness. Consciousness and Cognition 14: 140–168.CrossRefGoogle Scholar
  182. Shanahan, T. 2004. The evolution of Darwinism. Selection, adaptation, and progress in evolutionary biology. Cambridge University Press, Cambridge.Google Scholar
  183. Simon, R. N. Mukunda, S. Chaturvedi and V. Srinivasan. 2008. Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics. Phys. Lett. A 372: 6847–6852. ADSCrossRefzbMATHMathSciNetGoogle Scholar
  184. Smith, E.E. 1998. Concepts and categorization, in: Smith/Osherson95a. pp. 3–33. Chap. 1.Google Scholar
  185. Smith, E.E. and D.N. Osherson (Eds.). 1995. Thinking. An Invitation to Cognitive Science 2nd edn., Vol. 3:, The MIT Press, Cambridge. Google Scholar
  186. Sokal, A.P. and J. Bricmont. 1998. Fashionable nonsense. Postmodern intellectuals’ abuse of science. Picador, New York.Google Scholar
  187. Sternberg, S. 1994. Group theory and physics. Cambridge University Press, Cambridge.Google Scholar
  188. Stump, D. 1991. Poincaré’s thesis of the translatability of euclidean and non-euclidean geometries. NOÛS 25: 639–657.CrossRefMathSciNetGoogle Scholar
  189. Taine, H. 1872. On intelligence. Holt and Williams, New York. Translated by T.D. Haye from the French De l’intelligence (1870).Google Scholar
  190. Tarasov, L. 1986. This Amazingly Symmetrical World. Symmetry around us, symmetry at the heart of everything. Mir Publishers, Moscow. Translated from Russian edition (1982) by Alexander Repyev.Google Scholar
  191. Toulmin, S.E. 1967. The evolutionary development of natural science. Amer. Sci. 55: 456–471.Google Scholar
  192. Toulmin, S.E. 1972. Human understanding. The collective use and evolution of concepts. Princeton University Press, Princeton. Google Scholar
  193. Ullmo, J. 1969. La pensée scientifique moderne. Flammarion, Paris.Google Scholar
  194. Utiyama, R. 1956. Invariant theoretical interpretation of interaction. Phys. Rev. 101: 1597–1607. ADSCrossRefzbMATHMathSciNetGoogle Scholar
  195. Weil, A. 1960. De la métaphysique aux mathématiques. Sciences, 52–56 Reproduced, pp. 408–412 in Weil79a. Google Scholar
  196. Weil, A. 1979. Œuvres scientifiques. Collected papers, Vol. II: 1951–1964. Springer-Verlag, New York.Google Scholar
  197. Weinberg, S. 1992. Dreams of a final theory. The scientist’s search for the ultimate laws of nature. Pantheon Books, New York. Google Scholar
  198. Weinberg, S. 1995. The quantum theory of fields (Vol. I: Foundations). Cambridge University Press, New York.Google Scholar
  199. Weinberg, S. 2000. The quantum theory of fields (Vol. III: Supersymmetry). Cambridge University Press, New York.Google Scholar
  200. Weyl, H. 1949. Philosophy of mathematics and natural sciences. Princeton University Press, Princeton. Revised and augmented English edition translated by Olaf Helmer from the German.Google Scholar
  201. Weyl, H. 1952. Symmetry. Princeton University Press, Princeton. Traduction française: Symétrie et mathématique moderne, 1964, Flammarion, Paris.Google Scholar
  202. Wheeler, J.A. and W.H. Zurek (Eds.). 1983. Quantum theory and measurement, Princeton series in physics. Princeton University Press, Princeton.Google Scholar
  203. Wigner, E.P. 1960. The unreasonable effectiveness of mathematics in the natural sciences. Comm. Pure Appl. Math. 13: 1–14.ADSCrossRefzbMATHGoogle Scholar
  204. Wigner, E.P. 1995. Philosophical reflections and syntheses. Springer, Berlin. Annoted by Gérard G. Emch.Google Scholar
  205. Worrall, J. 1989. Structural realism: The best of both worlds? Dialectica 43: 99–124. Reprinted as Chap. VII of Papineau96a. CrossRefGoogle Scholar
  206. Yang, C.N. 1980. Beauty and theoretical physics, in: Curtin80a. pp. 25–40.Google Scholar
  207. Yang, C.N. 1994. Conceptual beginnings of various symmetries in twentieth century physics. Chinese J. Phys. 32: 1437–1446. ADSGoogle Scholar
  208. Yang, C.N. and R.L. Mills. 1954. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96: 191–195.ADSCrossRefMathSciNetGoogle Scholar
  209. Zellner, A., H.A. Keuzenkamp and M. McAleer (Eds.). 2001. Simplicity, inference and modelling. Keeping it sophisticatedly simple. Cambridge University Press, Cambridge.Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et de Physique ThéoriqueUniversité François Rabelais de Tours – CNRS (UMR 7350), Fédération Denis PoissonToursFrance

Personalised recommendations