The European Physical Journal H

, Volume 38, Issue 4, pp 549–572 | Cite as

Nordic cosmogonies: Birkeland, Arrhenius and fin-de-siècle cosmical physics

  • Helge KraghEmail author


During the two decades before World War I, many physicists, astronomers and earth scientists engaged in interdisciplinary research projects with the aim of integrating terrestrial, solar and astronomical phenomena. Under the umbrella label “cosmical physics” they studied, for example, geomagnetic storms, atmospheric electricity, cometary tails and the aurora borealis. According to a few of the cosmical physicists, insights in solar-terrestrial and related phenomena might be extrapolated to the entire solar system or beyond it. Inspired by their research in the origin and nature of the aurora, Kristian Birkeland from Norway and Svante Arrhenius from Sweden proposed new theories of the universe that were of a physical rather than astronomical nature. Whereas Birkeland argued that electrons and other charged particles penetrated the entire universe – and generally that electromagnetism was of no less importance to cosmology than gravitation – Arrhenius built his cosmology on the hypothesis of dust particles being propelled throughout the cosmos by stellar radiation pressure. Both of the Scandinavian scientists suggested that the universe was infinitely filled with matter and without a beginning or an end in time. Although their cosmological speculations did not survive for long, they are interesting early attempts to establish physical cosmologies and for a while they attracted a good deal of attention.


Dark Matter Dust Particle Magnetic Storm Geomagnetic Storm Radiation Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbe, C. 1911. The meteorology of the future. Pop. Sci. Month. 78: 21-35 Google Scholar
  2. 2.
    Alfvén, H. 1950. Cosmical Electrodynamics. Clarendon Press, Oxford Google Scholar
  3. 3.
    Anderson, J.A. 1908. The work of Prof. Carl Störmer on Birkeland’s theory of the aurora borealis. Month. Weather Rep. 36: 129-131 ADSCrossRefGoogle Scholar
  4. 4.
    Arrhenius, G. 1959. Svante Arrhenius’ contributions to earth science and cosmology. In Svante Arrhenius, till 100-Årsminnet av hans Födelse. Almqvist & Wiksell, Uppsala, pp. 67-81 Google Scholar
  5. 5.
    Arrhenius, S. 1900. Über die Ursache der Nordlichter. Physik. Zeits. 2: 81-87, 97-105 Google Scholar
  6. 6.
    Arrhenius, S. 1901. Zur Kosmogonie. Arch. Sci. Phys. Nat. 6: 862-873 zbMATHGoogle Scholar
  7. 7.
    Arrhenius, S. 1903a. On the electric equilibrium of the sun. Month. Not. Roy. Astron. Soc. 64: 496-499 Google Scholar
  8. 8.
    Arrhenius, S. 1903b. Lehrbuch der kosmischen Physik. Hirzel, Leipzig Google Scholar
  9. 9.
    Arrhenius, S. 1903c. Die Verbreitung des Lebens im Weltenraum. Die Umschau 7: 481-485 Google Scholar
  10. 10.
    Arrhenius, S. 1904. On the physical nature of the solar corona. Astrophys. J. 20: 224-231 ADSCrossRefGoogle Scholar
  11. 11.
    Arrhenius, S. 1906. The relation of meteorology to other sciences. In International Congress of Arts and Sciences: Astronomy and Earth Sciences, edited by Howard J. Rogers. University Alliance, London, Vol. 3, pp. 733-740 Google Scholar
  12. 12.
    Arrhenius, S. 1908. Worlds in the Making: The Evolution of the Universe. Harper & Brothers, New York Google Scholar
  13. 13.
    Arrhenius, S. 1909. Die Unendlichkeit der Welt. Scientia 5: 217-229 Google Scholar
  14. 14.
    Arrhenius, S. 1912. Die Verteilung der Himmelskörper. Meddel. Kungl. Vetenskapsakad. Nobelinstitut 2: no. 21 Google Scholar
  15. 15.
    Arrhenius, S. 1914. Das Milchstrassenproblem. Scientia 15: 349-363 Google Scholar
  16. 16.
    Augur, A.W. 1901. [Review of Arrhenius’ theory of the aurora]. Astrophys. J. 13: 344-347 ADSCrossRefGoogle Scholar
  17. 17.
    Berny, A. 1913. Über kosmische Entwicklung. Das Weltall 13: 317-324 Google Scholar
  18. 18.
    Birkeland, K. 1895. Solution générale des équations de Maxwell pour un milieu absorbant homogène et isotrope. Comptes Rendus 12: 1046-1050 Google Scholar
  19. 19.
    Birkeland, K. 1896. Sur les rayons cathodiques sous l’action de forces magnétiques intenses. Arch. Sci. Phys. Nat. 1: 497-512 Google Scholar
  20. 20.
    Birkeland, K. 1901. Expédition norvégienne de 1899-1900 pour l’étude des auroras boréales. Videnskabsselskabets Skrifter, I, no. 1: 1-180 Google Scholar
  21. 21.
    Birkeland, K. 1908. The Norwegian Aurora Polaris Expedition 1902-1903, H. Aschehoug & Co., Christiania, Vol. 1, Section 1 Google Scholar
  22. 22.
    Birkeland, K. 1911. Les anneaux de Saturne sont-ils dus à une radiation électrique de la planète? Comptes Rendus 153: 375-377 Google Scholar
  23. 23.
    Birkeland, K. 1913a. The Norwegian Aurora Polaris Expedition 1902-1903, H. Aschehoug & Co., Christiania, Vol. 1, Section 2 Google Scholar
  24. 24.
    Birkeland, K. 1913b. The origin of worlds. Sci. Am., Suppl. 76: 7-9, 12, 20-22 Google Scholar
  25. 25.
    Birkeland, K. 1913c. De l’origine des mondes. Arch. Sci. Phys. Nat. 35: 529-564 Google Scholar
  26. 26.
    Birkeland, K. 1916. Les rayons corpusculaires du soleil qui pénètrent dans l’atmosphère terrestre: sont-ils négatifs ou positifs? Arch. Sci. Phys. Nat. 41: 22-37, 108-124 Google Scholar
  27. 27.
    Block, L. 1955. Model experiments on aurorae and magnetic storms. Tellus 7: 65-86 ADSCrossRefGoogle Scholar
  28. 28.
    Borowitz, S. 2008. The Norwegian and the Englishman. Phys. Persp. 10: 287-294 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Clerke, A.M. 1903. Problems in Astrophysics. Adam & Charles Black, London Google Scholar
  30. 30.
    Clerke, A.M. 1905. Modern Cosmogonies. Adam & Charles Black, London Google Scholar
  31. 31.
    Cox, J. 1902a. Comets’ tails, the corona and the aurora borealis. Pop. Sci. Month. 60, 266-278 Google Scholar
  32. 32.
    Cox, J. 1902b. On prof. Arrhenius’ theory of cometary tails and auroræ. Nature 66: 54-56 ADSCrossRefGoogle Scholar
  33. 33.
    Crawford, E. 1996. Arrhenius: From Ionic Theory to the Greenhouse Effect. Science History Publications, Canton, MA Google Scholar
  34. 34.
    Crawford, E. 1997. Arrhenius’ 1896 model of the greenhouse effect in context. Ambio 26, no. 1: 6-11 Google Scholar
  35. 35.
    Crawford, E. 2002. The Nobel Population 1901-1950. A Census of the Nominators and Nominees for the Prizes in Physics and Chemistry. Universal Academy Press, Tokyo Google Scholar
  36. 36.
    Dick, S.J. 1996. The Biological Universe: The Twentieth-Century Extraterrestrial Life Debate. Cambridge University Press, Cambridge Google Scholar
  37. 37.
    Egeland, A. and W.J. Burke. 2010. Kristian Birkeland: The First Space Scientist. Springer, Dordrecht Google Scholar
  38. 38.
    Egeland, A. and W.J. Burke. 2013. Carl Størmer: Auroral Pioneer. Springer, Berlin Google Scholar
  39. 39.
    Ekholm, N. 1902. Die Extinktion des Lichtes im Weltall. Met. Zeits. 19: 242-244 Google Scholar
  40. 40.
    Friedman, R.M. 1995. Civilization and national honour: The rise of Norwegian geophysical and cosmic science. In Making Sense of Space: The History of Norwegian Space Activities, edited by J.P. Collett. Scandinavian University Press, Oslo, pp. 3-40 Google Scholar
  41. 41.
    Friedman, R.M. 2001. The Politics of Excellence: Behind the Nobel Prize in Science. W.H. Freeman, New York Google Scholar
  42. 42.
    Goldstein, E. 1881. Ueber die Entladung der Elektricität in verdünnten Gasen. Ann. Phys. 12: 249-279 CrossRefGoogle Scholar
  43. 43.
    Halm, J. 1902. On prof. Arrhenius’ theory of cometary tails and auroræ. Nature 65: 415-416; 66: 55-56 CrossRefGoogle Scholar
  44. 44.
    Hammerl, C., W. Lenhardt, R. Steinacker and P. Steinhauser, eds. 2001. Die Zentralanstalt für Meteorologie und Geodynamik: 150 Jahre Meteorologie und Geophysik in Österreich. Leykam Buchverlagsgesellschaft, Graz Google Scholar
  45. 45.
    Hedenus, M. 2007. Der Komet in der Entladungsröhre: Eugen Goldstein, Wilhelm Foerster und die Elektrizität im Weltraum. GNT-Verlag, Stuttgart Google Scholar
  46. 46.
    Hirsh, R.F. 1985. Glimpsing the Invisible Universe: The Emergence of X-ray Astronomy. Cambridge University Press, Cambridge Google Scholar
  47. 47.
    Holmberg, G. 1999. Reaching for the Stars: Studies in the History of Swedish Stellar and Nebular Astronomy. Ugglan, Lund Google Scholar
  48. 48.
    Jago, L. 2001. The Northern Lights: The True Story of the Man Who Unlocked the Secrets of the Aurora Borealis. Alfred A. Knopf, New York Google Scholar
  49. 49.
    Jørgensen, T.S. and O. Rasmussen. 2006. Adam Paulsen, a pioneer in auroral research. EOS 87, no. 6: 61-66 ADSCrossRefGoogle Scholar
  50. 50.
    Kamminga, H. 1982. Life from space – a history of panspermia. Vistas Astron. 26: 67-86 ADSCrossRefGoogle Scholar
  51. 51.
    Kragh, H. 1995. Cosmology between the wars: The Nernst-MacMillan alternative. J. Hist. Astron. 26: 93-115 MathSciNetADSGoogle Scholar
  52. 52.
    Kragh, H. 2007a. Conceptions of Cosmos. From Myths to the Accelerating Universe: A History of Cosmology. Oxford University Press, Oxford Google Scholar
  53. 53.
    Kragh, H. 2007b. Cosmic radioactivity and the age of the universe, 1900-1930. J. Hist. Astron. 38: 393-412 ADSGoogle Scholar
  54. 54.
    Kragh, H. 2008. Entropic Creation: Religious Contexts of Thermodynamics and Cosmology. Ashgate, Aldershot Google Scholar
  55. 55.
    Kragh, H. 2009. The spectrum of the aurora borealis: From enigma to laboratory science. Hist. Stud. Nat. Sci. 39: 377-417 Google Scholar
  56. 56.
    Kragh, H. 2012. Is space flat? Nineteenth-century astronomy and non-Euclidean geometry. J. Astron. Hist. Heritage 15: 149-158 ADSGoogle Scholar
  57. 57.
    Kragh, H. 2013. The rise and fall of cosmical physics: Notes for a history, ca. 1850-1920. Arxiv: 1304.3890 [physics.hist-ph] Google Scholar
  58. 58.
    Kragh, H. and B. Carazza. 1990. Augusto Righi’s magnetic rays: A failed research program in early 20th-century physics. Hist. Stud. Phys. Sci. 21: 1-28 Google Scholar
  59. 59.
    Langmuir, I. 1928. Oscillations in ionized gases. Proc. Natl. Acad. Sci. 14: 627-637 ADSCrossRefGoogle Scholar
  60. 60.
    Lockyer, W.J. 1894. Text-book of cosmical physics. Nature 50: 49-50 ADSCrossRefGoogle Scholar
  61. 61.
    Malmfors, K.G. 1946. Experiments on the aurorae. Ark. Mat. Astr. Fys. B 34: 1-8 Google Scholar
  62. 62.
    Morrisson, Mark S. 2007. Modern Alchemy: Occultism and the Emergence of Atomic Theory. Oxford University Press, Oxford Google Scholar
  63. 63.
    Mott-Smith, H.M. 1971. History of “plasmas.” Nature 233: 219 ADSCrossRefGoogle Scholar
  64. 64.
    Müller, J. and C.F.W. Peters. 1894. Joh. Müller’s Lehrbuch der kosmischen Physik. Vieweg und Sohn, Braunschweig Google Scholar
  65. 65.
    Norton, J.D. 1999. The cosmological woes of Newtonian gravitation theory. In The Expanding World of General Relativity, edited by Hubert Goenner et al. Birkhäuser, Boston, pp. 271-324 Google Scholar
  66. 66.
    Oberkofler, G. et al. 1990. 100 Jahre Institut für Meteorologie und Geophysik (Kosmische Physik) der Leopold-Franzens-Universität Innsbruck. Wagnerschen Universitätsbuchhandlung, Innsbruck Google Scholar
  67. 67.
    Paul, E.P. 1993. The Milky Way Galaxy and Statistical Cosmology 1890-1924. Cambridge University Press, Cambridge Google Scholar
  68. 68.
    Paulsen, A. 1906. Sur les récentes theories de l’aurore polaire. Bull. l’Acad. Roy. Sci. Danemark 2: 109-144 Google Scholar
  69. 69.
    Peratt, A.L. 1985. Birkeland and the electromagnetic cosmology. Sky & Telescope 69: 389-391 ADSGoogle Scholar
  70. 70.
    Peratt, A.L. 1995. Introduction to plasma astrophysics and cosmology. Astrophys. Space Sci. 227: 3-11 ADSCrossRefGoogle Scholar
  71. 71.
    Poincaré, H. 1896. Remarques sur une expérience de M. Birkeland. Comptes Rendus 123: 530-533 Google Scholar
  72. 72.
    Poincaré, H. 1911. Leçons sur les Hypothèses Cosmogoniques. A. Hermann, Paris Google Scholar
  73. 73.
    Poincaré, H. 1913. Dernières Pensées. Flammarion, Paris Google Scholar
  74. 74.
    Potemra, T.A. 1988. Birkeland currents in the Earth’s magnetosphere. In Plasma in the Universe, edited by C.-G. Fälthammar et al. Springer, Berlin, pp. 155-169 Google Scholar
  75. 75.
    Romer, R.H. 1982. Alternatives to the Poynting vector for describing the flow of electromagnetic energy. Am. J. Phys. 50: 1166-1168 ADSCrossRefGoogle Scholar
  76. 76.
    Rypdal, K. and T. Brundtland. 1997. The Birkeland terrella experiments and their importance for the modern synergy of laboratory and space plasma physics. J. Physique IV 7, C4: 113-132 CrossRefGoogle Scholar
  77. 77.
    Schuster, A. 1911. On the origin of magnetic storms. Proc. Roy. Soc. 85: 44-50 ADSCrossRefGoogle Scholar
  78. 78.
    Schwarzschild, K. 1913. [Review of Poincaré, 1911]. Astrophys. J. 37: 294-298 ADSCrossRefGoogle Scholar
  79. 79.
    Schwarzschild, K. 1992. Der Druck des Lichts auf kleine Kugeln und die Arrhenius’sche Theorie der Cometenschweife. In Karl Schwarzschild. Gesammelte Werke, Vol. 1, edited by H.H. Voigt. Springer Verlag, Berlin, pp. 317-322 Google Scholar
  80. 80.
    Snyder, C. 1907a. New epic of creation. New York Times, 6 July Google Scholar
  81. 81.
    Snyder, C. 1907b. The World Machine. The First Phase: The Cosmic Mechanism. Longmans, Green, and Co., London Google Scholar
  82. 82.
    Stubhaug, A. 2010. Gösta Mittag-Leffler: A Man of Conviction. Springer-Verlag, Berlin Google Scholar
  83. 83.
    Størmer, C. 1917. Corpuscular theory of the aurora borealis. Terrestr. Magn. Atm. Electr. 22: 23-34 CrossRefGoogle Scholar
  84. 84.
    Størmer, C. 1955. The Polar Aurora. Clarendon Press, Oxford Google Scholar
  85. 85.
    Thomson, J.J. 1897. Cathode rays. Phil. Mag. 44: 296-314 Google Scholar
  86. 86.
    Thomson, J.J. 1901. The existence of bodies smaller than atoms. Proc. Roy. Inst. 16: 138-150 Google Scholar
  87. 87.
    Thomson, J.J. 1903. Conduction of Electricity through Gases. Cambridge University Press, Cambridge Google Scholar
  88. 88.
    Trabert, W. 1911. Lehrbuch der kosmischen Physik. B.G. Teubner, Leipzig Google Scholar
  89. 89.
    Walter, S., ed. 2007. La Correspondance entre Henri Poincaré et les Physiciens, Chimistes et Ingénieurs. Birkhäuser, Basel Google Scholar
  90. 90.
    Worrall, J. 1982. The pressure of light: The strange case of the vacillating “crucial experiment.” Stud. Hist. Phil. Sci. 13, 133-171 CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Centre for Science Studies, Aarhus UniversityAarhusDenmark

Personalised recommendations