The European Physical Journal H

, Volume 39, Issue 1, pp 87–139 | Cite as

Paths to Förster’s resonance energy transfer (FRET) theory

  • B.R. MastersEmail author


Theodor Förster (1910–1974) developed a phenomenological theory of nonradiative resonance energy transfer which proved to be transformative in the fields of chemistry, biochemistry, and biology. This paper explores the experimental and the theoretical antecedents of Förster’s theory of resonance energy transfer (FRET). Early studies of sensitized fluorescence, fluorescence depolarization, and photosynthesis demonstrated the phenomena of long-range energy transfer. At the same time physicists developed theoretical models which contained common physical mechanisms and parameters: oscillating dipoles as models for the atoms or molecules, dipole-dipole coupling for the interaction, and a distance R 0 that is optimal for resonance energy transfer. Early theories predicted R 0 that was too large as compared to experiments. Finally, in 1946 Förster developed a classical theory and in 1948 he developed a quantum mechanical theory; both theories predicted an inverse sixth power dependence of the rate of energy transfer and a R 0 that agreed with experiments. This paper attempts to determine why Förster succeeded when the other theoreticians failed to develop the correct theory. The putative roles of interdisciplinary education and collaborative research are discussed. Furthermore, I explore the role of science journals and their specific audiences in the popularization of FRET to a broad interdisciplinary community.


Energy Transfer Electric Dipole Resonance Energy Transfer Internal Conversion Excitation Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, D.L. and A.A. Demidov, Eds. 1999. Resonance Energy Transfer, Wiley, New York Google Scholar
  2. 2.
    Arnold, W. and J.R. Oppenheimer. 1950. Internal conversion in the photosynthetic mechanism of blue-green algae. J. Gen. Physiol. 33: 423-435 Google Scholar
  3. 3.
    Bennett, R.G., R.P. Schwenker, R.E. Kellog. 1964. Radiationless intermolecular energy transfer. II. Triplet-singlet transfer. J. Chem. Phys. 41: 3040-3041 ADSGoogle Scholar
  4. 4.
    Berberan-Santos, M.N. 2001. Pioneering contributions of Jean and Francis Perrin to molecular luminescence. In: New Trends in Fluorescence Spectroscopy, applications to chemical and life sciences, B. Valeur and J.-C. Brochon Eds., Springer-Verlag, Berlin. pp. 7-33 Google Scholar
  5. 5.
    Beljonne, D., C. Curutchet, G.D. Scholes, R.J. Silbey. 2009. Beyond Förster resonance transfer in biological and nanoscale systems. J. Phys. Chem. B 113: 6583-6599 Google Scholar
  6. 6.
    Bertulani, C.A. 2007. Nuclear Physics in a Nutshell. Princeton: Princeton University Press, pp. 244-249 Google Scholar
  7. 7.
    Beutler, H. and B. Josephy. 1927. Resonanz bei Stössen zweiter Art in der Fluoreszenz und Chemilumineszenz. Naturwissenschaften 15: 540 ADSGoogle Scholar
  8. 8.
    Beutler, H. and B. Josephy. 1929. Resonanz bei Stössen zweiter Art in der Fluoreszenz und Chemilumineszenz. Zeitschrift für Physik 53: 747 ADSGoogle Scholar
  9. 9.
    Born, M. and R. Oppenheimer. 1927. Zur Quantentheorie der Molekeln. [On the Quantum Theory of Molecules]. Ann. Phys. (Leipzig) 84: 457-484 ADSzbMATHGoogle Scholar
  10. 10.
    Braslavsky, S.E. 2007. Glossary of terms used in photochemistry, 3rd edition. Pure Appl. Chem. 79: 293-465 Google Scholar
  11. 11.
    Braslavsky, S.E., E. Fron, H.B. Rodríguez, E. San Román, G.D. Scholes, G. Schweitzer, B. Valeur, J. Wirz. 2008. Pitfalls and limitations in the practical use of Förster’s theory of resonance energy transfer. Photochem. Photobiol. Sci. 7: 1444-1448 Google Scholar
  12. 12.
    Brau, C.A. 2004. Modern Problems in Classical Electrodynamics. Oxford University Press, New York Google Scholar
  13. 13.
    Bücher, Th. and J. Kaspers. 1947. Photochemische spaltung des kohlenoxydmyoglobins durch ultraviolette strahlung (wirksamkeit der durch die proteinkomponente des pigments absorbierten quanten). Biochim. Biophys. Acta 1: 21-34 Google Scholar
  14. 14.
    Cario, G. 1922. Über Entstehung wahrer Lichtabsorption und scheinbare Koppelung von Quantensprügen. Zeitschrift für Physik 10: 185-199 ADSGoogle Scholar
  15. 15.
    Cario, G. and J. Franck. 1922. Über Zerlegung von Wasserstoffmolekülen durch angeregte Quecksilberatome. Zeitschrift für Physik 11: 161-166 ADSGoogle Scholar
  16. 16.
    Cario, G. and J. Franck. 1923. Über sensibilisierte Fluoreszenz von Gasen. Zeitschrift für Physik 17: 202-212 ADSGoogle Scholar
  17. 17.
    Clegg, R.M. 1995. Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 6: 103-110 Google Scholar
  18. 18.
    Clegg, R.M. 1996. Fluorescence resonance energy transfer. In: Fluorescence Imaging Spectroscopy and Microscopy, X.F. Wang and B. Herman Eds., Chemical Analysis Series, volume 137, John Wiley & Sons, New York, pp. 179-251 Google Scholar
  19. 19.
    Clegg, R.M. 2006. The history of FRET: From conception to the labor of birth. Reviews in Fluorescence, C.D. Geddes and J.R. Lakowicz Eds., volume 3. Springer, New York, pp. 1-45 Google Scholar
  20. 20.
    Condon, E. 1926. A theory of intensity distribution in band systems. Phys. Rev. 28: 1182-1201 ADSzbMATHGoogle Scholar
  21. 21.
    Consani, C., G. Auböck, F. van Mourik, M. Chergui. 2013. Ultrafast Tryptophan-to-Heme Electron Transfer in Myoglobins Revealed by UV 2D Spectroscopy. Science 339: 1586-1589 ADSGoogle Scholar
  22. 22.
    Cruzeiro-Hansson, L. and S. Takeno. 1997. Davydov model: the quantum, mixed quantum-classical, and full classical systems. Phys. Rev. E 56: 894-906 ADSGoogle Scholar
  23. 23.
    Dale, R.E., J. Eisinger, W.E. Blumberg. 1975. The orientational freedom of molecular probes. The orientational factor in intramolecular energy transfer. Biophys. J. 26: 161-194 Google Scholar
  24. 24.
    Davydov, A.S. 1962. Theory of Molecular Excitons, M. Kasha, M. Oppenheimer, Jr. translators, McGraw-Hill, New York Google Scholar
  25. 25.
    Debye, P. 1920. Die van der Waalsschen Kohaesionskraefte. Physikalische Zeitschrift 21: 178-187 zbMATHGoogle Scholar
  26. 26.
    Debye, P. 1921. Molekularkraefte und ihre elektrische Deutung. Physikalische Zeitschrift 22: 301-308 Google Scholar
  27. 27.
    Dexter, D.L. 1953. A theory of sensitized luminescence in solids. J. Chem. Phys. 21: 836-850 ADSGoogle Scholar
  28. 28.
    Dirac, P.A.M. 1926. On the theory of quantum mechanics. Proc. Roy. Soc. London (A) 112: 661-677 ADSzbMATHGoogle Scholar
  29. 29.
    Dirac, P.A.M. 1927. The quantum theory of emission and absorption of radiation. Proc. Roy. Soc. London (A) 114: 243-265 ADSzbMATHGoogle Scholar
  30. 30.
    Duncan, A. and M. Janssen. 2013. (Never) Mind your p’s and q’s: Von Neumann versus Jordan on the Foundations of Quantum Theory. Eur. Phys. J. H–Historical Perspectives on Contemporary Physics 38: 175-259 Google Scholar
  31. 31.
    Eckart, C. 1935. The Kinetic Energy of Polyatomic Molecules. Phys. Rev. 46: 383-387 ADSGoogle Scholar
  32. 32.
    Eckert, M. 2013. Arnold Sommerfeld, Science, Life and Turbulent times 1868–1951. Springer, New York Google Scholar
  33. 33.
    Eisenschitz, R. and F. London. 1930. On the ratio of the van der Waals forces and the homo-polar binding forces. Zeitschrift für Physik 60: 491-527 ADSzbMATHGoogle Scholar
  34. 34.
    Emerson R. and W. Arnold. 1932a. A separation of the reactions in photosynthesis by means of intermittent light. J. Gen. Physiol. 15: 391-420 Google Scholar
  35. 35.
    Emerson R. and W. Arnold. 1932b. The photochemical reaction in photosynthesis. J. Gen. Physiol. 16: 191-205 Google Scholar
  36. 36.
    Emerson R. and C.M. Lewis. 1942. The photosynthetic efficiency of phycocyanin in Chroococcus, and the problem of carotenoid participation in photosynthesis. J. Gen. Physiol. 25: 579-595 Google Scholar
  37. 37.
    Fano, U. and L. Fano. 1959. Basic physics of atoms and molecules. John Wiley & Sons, New York. Appendix X, pp. 398-402 Google Scholar
  38. 38.
    Feofilov, P.P. and B.Ya. Sveshnikov. 1940. On the concentration depolarization of the fluorescence of dye-stuff solutions. J. Phys. USSR 3: 493-505 Google Scholar
  39. 39.
    Fermi, E. 1932. Quantum theory of radiation. Rev. Mod. Phys. 4: 87-132 ADSGoogle Scholar
  40. 40.
    Fermi, E. 1995. Notes on Quantum Mechanics, a course given by Enrico Fermi at the University of Chicago, second edition. The University of Chicago Press, Chicago. pp. 103-107. Google Scholar
  41. 41.
    Feynman, R.P., R.B. Leighton, M. Sands. 2006. The Feynman Lectures on Physics, the definitive edition, Volume I. Addison Wesley, San Francisco. pp. 23-1-23-9 Google Scholar
  42. 42.
    Förster, T. 1946. Energiewanderung und Fluoreszenz. Naturwissenschaften 33: 166-175 ADSGoogle Scholar
  43. 43.
    Förster, T. 1947a. Ein Beitrag zur theorie der Photosynthese. Z. Naturforsch. 2b: 174-182 Google Scholar
  44. 44.
    Förster, T. 1947b. Fluoreszenzversuche an Farbstoffmischungen. Angew Chem. A 59: 181-187 Google Scholar
  45. 45.
    Förster, T. 1948. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 2: 55-75 zbMATHGoogle Scholar
  46. 46.
    Förster, T. 1949. Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie, Z. Naturforsch. A 4: 321-327 ADSGoogle Scholar
  47. 47.
    Förster, T. 1951. Fluoreszenz Organischer Verbindungen. Vandenhoeck & Ruprecht, Göttingen Google Scholar
  48. 48.
    Förster, T. 1952. Photochemische Primärprozesse bei mehratomigen Molekülen. Z. Elektrochem. 56: 717 Google Scholar
  49. 49.
    Förster, T. 1959. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27: 7-17 Google Scholar
  50. 50.
    Förster, T. 1960a. Transfer Mechanisms of electronic excitation energy. Rad. Res. Supplement 2: 326-339 Google Scholar
  51. 51.
    Förster, T. 1960b. Excitation transfer. In: Comparative Effects of Radiation. M. Burton, J.S. Kirby-Smith, J.L. Magee Eds., Wiley, New York. pp. 300-319 Google Scholar
  52. 52.
    Förster, Th. 1965. Delocalized excitation and excitation transfer. In: Modern Quantum Chemistry, Section III B, Action of Light and Organic Crystals, O. Sinanoglu Ed., Academic Press, New York. pp. 93-137 Google Scholar
  53. 53.
    Förster, T. 1967. Mechanism of energy transfer. In: Comprehensive Biochemistry. M. Florkin and E.H. Stotz Eds., Elsevier, Amsterdam, 22: 61-80 Google Scholar
  54. 54.
    Förster, Th. 1969. Excimers. Angew. Chem. Int. Edn. Engl. 8: 333-343 Google Scholar
  55. 55.
    Franck, J. 1922. Einige aus der Theorie von Klein ans Rosseland zu ziehende Folgerungen über Fluoreszenz, photochemische Prozesse und die Electronenemission glühender Körper. Zeitschrift für Physik. 9: 259-266 ADSGoogle Scholar
  56. 56.
    Franck, J. 1926. Elementary processes of photochemical reactions. Trans. Faraday Soc. 21: 536-542 Google Scholar
  57. 57.
    Franck, J. and P. Jordan. 1926. Anregung von Quantensprügen durch Stösse. Verlag von Julius Springer, Berlin Google Scholar
  58. 58.
    Franck, J. and G. Hertz. 1914. Über Zusammenstöße zwischen Elektronen und Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselben. Verh. Dtsch. Phys. Ges. 16: 457-467 Google Scholar
  59. 59.
    Franck J. and E. Teller. 1938. Migration and photochemical action of excitation energy in crystals. J. Chem. Phys. 6: 861-872 ADSGoogle Scholar
  60. 60.
    Frenkel, J.I. 1931a. On the transformation of light into heat in solids, I. Phys. Rev. 37: 17-44 ADSzbMATHGoogle Scholar
  61. 61.
    Frenkel, J.I. 1931b. On the transformation of light into heat in solids, II. Phys. Rev. 37: 1276-1294 ADSzbMATHGoogle Scholar
  62. 62.
    Frenkel, J.I. 1950. Wave Mechanics, Advanced General Theory. First published, 1934. Dover Publications, New York Google Scholar
  63. 63.
    Gaffron, H. and K. Wohl. 1936a. Zur Theorie der Assimilation. Naturwissenschaften 24: 81-90 ADSGoogle Scholar
  64. 64.
    Gaffron H. and K. Wohl. 1936b. Zur Theorie der Assimilation. Naturwissenschaften 24: 103-107 ADSGoogle Scholar
  65. 65.
    Gaviola, E. 1927. Ein fluorometer. Apparat zur Messung von Fluoreszenzabklingungszeiten. Zeitschrift für Physik 42: 853-861 ADSGoogle Scholar
  66. 66.
    Gaviola, E. and P. Pringsheim. 1924. Über den Einfluss der Konzentration auf die Polarisation der fluoreszenz von Farbstofflösungen. Zeitschrift für Physik 24: 24-36 ADSGoogle Scholar
  67. 67.
    Gavroglu, K. 1995. Fritz London, A Scientific Biography. Cambridge University Press, New York Google Scholar
  68. 68.
    Gavroglu, K. and A. Simões. 2011. Neither Physics Nor Chemistry. A History of Quantum Chemistry. The MIT Press, Cambridge Google Scholar
  69. 69.
    Gottfried, K. and T.-M. Yan. 2004. Quantum Mechanics, Fundamentals, second edition. Springer-Verlag, New York Google Scholar
  70. 70.
    Grinvald A., E. Haas, I.Z. Steinberg. 1972. Evaluation of the distribution of distances between energy donors and acceptors by fluorescence decay. Proc. Natl. Acad. Sci. USA 69: 2273-2277 ADSGoogle Scholar
  71. 71.
    Haas, E. and I. Steinberg. 1984. Intramolecular dynamics of chain molecules monitored by fluctuations in efficiency of excitation energy transfer. A theoretical study. Biophys. J. 46: 429-437 Google Scholar
  72. 72.
    Hass, E., E. Katchalsky-Katzir, I.Z. Steinberg. 1978. Brownian motions of the ends of oligopeptide chains in solution as estimated by energy transfer between chain ends. Biopolymers 17: 11-31 Google Scholar
  73. 73.
    Haugland, R.P., J. Yguerabide, L. Stryer. 1969. Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap. Proc. Natl. Acad. Sci. 63: 23-30 ADSGoogle Scholar
  74. 74.
    Heisenberg, W. 1926a. Mehrköperproblem und Resonanz in der Quantenmechanik. Zeitschrift für Physik 38: 411-426 ADSzbMATHGoogle Scholar
  75. 75.
    Heisenberg, W. 1926b. Über die Spektra von Atomsystemen mit zwei Elektronen. Zeitschrift für Physik 39: 499-518 ADSzbMATHGoogle Scholar
  76. 76.
    Heisenberg, W. 1927. Mehrköperprobleme und Resonanz in der Quantenmechanik II. Zeitschrift für Physik 41: 239-267 ADSzbMATHGoogle Scholar
  77. 77.
    Heitler, W. and F. London. 1927. Interaction between Neutral Atoms and Homopolar Binding According to Quantum Mechanics. Zeitschrift für Physik 44: 455-472 ADSzbMATHGoogle Scholar
  78. 78.
    Holtsmark, J. 1925. Über die Absorption in Na-Dampf. Zeitschrift für Physik 34: 722-729 ADSzbMATHGoogle Scholar
  79. 79.
    Jackson, J.D. 1999. Classical Electrodynamics, Third Edition. John Wiley & Sons, Inc., New York. pp. 407-455 Google Scholar
  80. 80.
    Jammer, M. 1989. The Conceptual Development of Quantum Mechanics (The History of Modern Physics 1800–1950). American Institute of Physics, New York, Vol. 12 Google Scholar
  81. 81.
    Jares-Erijman, E.A. and T.M. Jovin. 2003. FRET imaging. Nat. Biotechnol. 21: 1387-1395 Google Scholar
  82. 82.
    Jungnickel, C. and R. McCormmach. 1986. Intellectual Mastery of Nature: Theoretical Physics from Ohm to Einstein. The Now Mighty Theoretical Physics 1870–1925. The University of Chicago Press, Chicago, Vol. 2 Google Scholar
  83. 83.
    Kallmann, H. and F. London. 1929. Über quantenmechnische Energieübertragung zwischen atomaren Systemen. Ein Beitrag zum Problem der anomalgrossen Wirkungsquerschnitte. Z. Physik. Chem. (Frankfurt) B2: 207-243 Google Scholar
  84. 84.
    Kasha, M. 1959. Relation between exciton bands and conduction bands in molecular lamellar systems. In: Biophysical Science-A Study Program, J.L. Oncley Ed., John Wiley & Sons, New York. pp. 162-169 Google Scholar
  85. 85.
    Kasha, M. 1963. Energy transfer mechanisms and molecular exciton model for molecular aggregates. Radiat. Res. 20: 55-71 Google Scholar
  86. 86.
    Kasha, M. 1991. Energy transfer, charge transfer, and proton transfer in molecular composite systems. In: Physical and Chemical Mechanisms in Molecular Radiation Biology, W.A. Glass and M.N. Varma Eds., Plenum Press, New York. pp. 231-255 Google Scholar
  87. 87.
    Katchalski-Katzir, E., E. Haas, I.A. Steinberg. 1981. Study of conformation and mobility of polypeptides in solution by a novel fluorescence method. Ann. N.Y. Acad. Sci. 366: 44-61 ADSGoogle Scholar
  88. 88.
    Keesom W. 1912. On the deduction of the equation of state from Boltzmann’s entropy principle. In: Communications Physical Laboratory Leiden, H. Kamerlingh Onnes and E. Ijdo Eds., University of Leiden. pp. 3-20 Google Scholar
  89. 89.
    Kayser, H. and C. Runge. 1900–1932. Handbuch der Spektroskopie. Hirzel, Leipzig Google Scholar
  90. 90.
    Klee, E. 2003. Das Personenlexikon zum Dritten Reich. Wer war was vor und nach 1945. Fischer Verlag, Frankfurt am Main. p. 158 Google Scholar
  91. 91.
    Klein, O. and S. Rosseland. 1921. Über Zusammenstöße zwischen Atomen und freien Elektronen. Zeitschrift für Physik 4: 46-51 ADSGoogle Scholar
  92. 92.
    Knox, R.S. and H. van Amerongen. 2002. Refractive index dependence of the Förster resonance excitation transfer rate. J. Phys. Chem. B 106: 5289-5293 Google Scholar
  93. 93.
    Kragh, H. 2002. Quantum Generations. A History of Physics in the Twentieth Century. Princeton University Press, Princeton Google Scholar
  94. 94.
    Kramer, H.E.A. and P. Fischer. 2011. The scientific work of Theodor Förster: a brief sketch of his life and personality. ChemPhysChem. 12: 555-558 Google Scholar
  95. 95.
    Latt, S.A., H.T. Cheung, E.R. Blout. 1965. Energy transfer: a system with relatively fixed donor-acceptor separation. J. Am. Chem. Soc. 87: 995-1003 Google Scholar
  96. 96.
    Lemmerich, J. 2007. Aufrecht im Sturm der Zeit. Der Physiker James Franck, 1882–1964. GNT-Verlag, Berlin Google Scholar
  97. 97.
    Levschin, W.L. 1931a. Das Gesetz der Spiegelkorrespondenz der Absorptions und Fluoreszenzspektren. I. Zeitschrift für Physik 72: 368-381 ADSGoogle Scholar
  98. 98.
    Levschin, W.L. 1931b. Der einfluss der temperatur auf die fluoreszenz der farbstofflösungen und einige folgen des gesetzes der spiegelkorrespondenz. II. Zeitschrift für Physik 72: 382-391 ADSGoogle Scholar
  99. 99.
    Lin, S.H., W.Z. Xiao, W. Dietz. 1993. Generalized Förster-Dexter theory of photoinduced intramolecular energy transfer. Phys. Rev. E 47: 3698-3706 ADSGoogle Scholar
  100. 100.
    London, F. 1928. On the Quantum Theory of Homo-polar Valence Numbers. Zeitschrift für Physik 46: 455-477 ADSzbMATHGoogle Scholar
  101. 101.
    London, F. 1930. Zur Theorie und Systemmatik der Molekularkraefte. Zeitschrift für Physik 63: 245-279 ADSzbMATHGoogle Scholar
  102. 102.
    London, F. 1937. The general theory of molecular forces. Trans. Faraday Soc. 33: 8-26 Google Scholar
  103. 103.
    Masters, B.R. 2011. Heinrich Hertz and the Foundations of Electromagnetism. Opt. Photon. News 22: 30-35 Google Scholar
  104. 104.
    Masters, B.R. 2013. The Origins of Maria Göppert’s Dissertation on Two-Photon Quantum Transitions at Göttingen’s Institutes of Physics 1920-1933. Traditions and Transformations in the History of Quantum Physics, S. Katzir, C. Lehner, J. Renn Eds., Max Planck Research Library for the History and Development of Knowledge. Proceedings 5. Chapter 8, pp. 209-230.
  105. 105.
    McNaught, A.D. and A. Wilkinson. 1997. IUPAC. Compendium of Chemical Terminology, 2nd edn. Blackwell Scientific Publications, Oxford Google Scholar
  106. 106.
    Mehra, J. and H. Rechenberg. 2001. The Historical Development of Quantum Theory. Springer, New York, Vol. 1-6 Google Scholar
  107. 107.
    Mensing, L. 1925. Beitrag zur Theorie der Verbreiterung von Spektrallinien. Zeitschrift für Physik 34: 611-621 ADSzbMATHGoogle Scholar
  108. 108.
    Muñoz-Losa, A., C. Curutchet, B.P. Krueger, L.R. Hartsell, B. Mennucci. 2009. Fretting about FRET: failure of the ideal dipole approximation. Biophys. J. 96: 4779-4788 ADSGoogle Scholar
  109. 109.
    Nordheim L. 1926. Zur Theorie der Anregung von Atomen durch Stösse. Zeitschrift für Physik 36: 496-539 ADSzbMATHGoogle Scholar
  110. 110.
    Neveu, M. and J.-P. Baton, Eds. 1998. Écrits de Francis Perrin. Commissariat à l’Energie Atomique, Paris Google Scholar
  111. 111.
    Olaya-Castro, A. and G.D. Scholes. 2011. Energy transfer from Förster–Dexter theory to quantum coherent light-harvesting. Int. Rev. Phys. Chem. 30: 49-77, DOI: 10.1080/0144235X.2010.537060 Google Scholar
  112. 112.
    Oppenheimer, J.R. 1941. Internal Conversion in Photosynthesis. Phys. Rev. 60: 158 ADSGoogle Scholar
  113. 113.
    Pauling, L. and E.B. Wilson, Jr. 1935. Introduction to quantum mechanics with applications to chemistry. McGraw-Hill, New York. pp. 314-325, reprinted in a Dover Publication in 1985 Google Scholar
  114. 114.
    Peierls, R. 1932. Zur Theorie der Absorptionsspektren fester Körper, Ann. Physik 13: 905-952 ADSGoogle Scholar
  115. 115.
    Perrin, F. 1925. Sur le mouvement Brownien de rotation. C. R. hebd. Séances Acad. Sci. 181: 514-516 zbMATHGoogle Scholar
  116. 116.
    Perrin, F. 1926. Polarisation de la lumière de fluorescence. Vie moyenne des molécules dans l’état excité. J. Phys. Rad. (Paris) 7: 390-401 Google Scholar
  117. 117.
    Perrin, F. 1927. Fluorescence et induction moléculaire par résonance. C. R. hebd. Séances Acad. Sci. 184: 1097-1100 Google Scholar
  118. 118.
    Perrin, F. 1929. La fluorescence des solutions. Induction moléculaire-polarisation et durée d’émission; photochimie. Ann. Phys. (Paris) 12: 169-275 Google Scholar
  119. 119.
    Perrin, F. and J. Perrin. 1929. Activation et deactivation par induction moléculaire. In: Activation et structure des molécules. P.U.F., Paris. pp. 354-382 Google Scholar
  120. 120.
    Perrin, F. 1931. Fluorescence durée élémentaire d’émission lumineuse. In: La haute précision des mesures de longueur au laboratoire et dans l’industrie, M.A. Pérard Ed., Librairie Scientifique Hermann et Cie, Paris. pp. 2-42 Google Scholar
  121. 121.
    Perrin, F. 1932. Théorie quantique des transferts d’activation entre molécules de même espèce. Cas des solutions fluorescentes. Ann. Chim. phys. (Paris), 10th série, XVII: 283-314 Google Scholar
  122. 122.
    Perrin, F. 1933. Interaction entre atomes normal et activé. Transferts d’activation. Formation d’une molécule active. Ann. Institut Poincaré 3: 279-318 MathSciNetGoogle Scholar
  123. 123.
    Perrin, J. 1913. Les Atomes. Alcan, Paris. 1936 Rédaction nouvelle, Alcan, Paris Google Scholar
  124. 124.
    Perrin, J. 1925. Lumière et réactions chimiques. 2 me Conseil de Chimie Solvay, 1924, Gauthier-Villars, Paris. pp. 322-398 Google Scholar
  125. 125.
    Perrin, J. 1927. Fluorescence et induction moléculaire par résonance. C. R. hebd. Séances Acad. Sci. 184: 1097-1100 Google Scholar
  126. 126.
    Perrin, J. 1936. L’induction moléculaire. Acta Phys. Polon. 5: 319-332 Google Scholar
  127. 127.
    Perrin, J. and N. Choucroun. 1929. Fluorescence sensibilisée en milieu liquide (transferts d’activation par induction moléculaire). C. R. hebd. Séances Acad. Sci. 189: 1213-1216 Google Scholar
  128. 128.
    Porter, G. 1976. Some reflections on the work of Theodor Förster. Die Naturwissenschaften 63: 207-211 ADSGoogle Scholar
  129. 129.
    Pringsheim, P. 1928. Fluorescenz und Phosphorescenz im Lichte der neueren Atomtheorie, Dritte Auflage, Verlag von Julius Springer, Berlin Google Scholar
  130. 130.
    Purcell, E.M. and D.J. Morin. 2013. Electricity and Magnetism, Third Edition, Cambridge University Press, New York Google Scholar
  131. 131.
    Reisman, A. 2006. Turkey’s Modernization, Refugees from Nazism and Atatürk’s Vision. New Academia Publishing, LLC, Washington, DC p. 352 Google Scholar
  132. 132.
    San Martín, A., S. Ceballo, I. Ruminot, R. Lerchundi, W.B. Frommer, L.F. Barros. 2013. A Genetically Encoded FRET Lactate Sensor and Its Use To Detect the Warburg Effect in Single Cancer Cells. PLOS ONE 8(2): e57712. DOI: 10.1371/journal.pone.005771Google Scholar
  133. 133.
    Scholes, G.D. and K.P. Ghiggino. 1994. Electronic interactions and interchromophore excitation transfer. J. Phys. Chem. 98: 4580-4590 Google Scholar
  134. 134.
    Scholes, G.D. 2003. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54: 57-87 ADSGoogle Scholar
  135. 135.
    Schrödinger, E. 1926a. Quantisierung als Eigenwertproblem (Dritte Mitteilung). Ann. Physik 80: 437-490 zbMATHGoogle Scholar
  136. 136.
    Schrödinger, E. 1926b. Quantisierung als Eigenwertproblem (Vierte Mitteilung). Ann. Physik 81: 109-139 zbMATHGoogle Scholar
  137. 137.
    Schrödinger, E. 1927. Energieaustausch nach Wellenmechanik. Ann. Physik 83: 956-968 zbMATHGoogle Scholar
  138. 138.
    Simpson, W.T. and D.L. Peterson. 1957. Coupling strength for resonance force transfer of electronic energy in van der Waals solids. J. Chem. Phys. 26: 588-593 ADSGoogle Scholar
  139. 139.
    Stokes, G.G. 1852. On the change of Refrangibility of Light. Philos. Trans. R. Soc. Lond. 142: 463-562 Google Scholar
  140. 140.
    Stryer, L. and R.P. Haugland. 1967. Energy transfer: a spectroscopic ruler. Proc. Natl. Acad. Sci. USA 58: 719-726 ADSGoogle Scholar
  141. 141.
    Van der Meer, B.W., G. Coker III, S.-Y.S. Chen. 1994. Resonance Energy Transfer: Theory and Data, John Wiley & Sons, New York Google Scholar
  142. 142.
    Vavilov, S.I. and W.L. Levshin. 1923. Beiträge zur Frage über polarisiertes fluorescenzlicht von Farbstofflösungen. Zeitschrift für Physik 16: 135-154 ADSGoogle Scholar
  143. 143.
    Vavilov, S.I. 1943. Theory of the influence of concentration on the fluorescence of solutions. J. Phys. U.S.S.R. 7: 141-152 Google Scholar
  144. 144.
    Weigert, F. 1920. Über polarisierte Fluorescenz. Verh. d. D. Phys. Ges. 23: 100-102 Google Scholar
  145. 145.
    Weller, A. 1974. Nachruf auf Theodor Förster. Berichte der Bunsengesellschaft für Physikalische Chemie 78: 969-971 Google Scholar
  146. 146.
    Weller, A. 1980. In Memoriam, Theodor Förster, 1910–1974. EPA Newsletter 9: 6-19 Google Scholar
  147. 147.
    Winkler, J.R. 2013. FRETing over the Spectroscopic Ruler. Science 339: 1530-1531 ADSGoogle Scholar
  148. 148.
    Wlodarczyk, J., A. Woehler, F. Kobe, E. Ponimaskin, A. Zeug, E. Neher. 2008. Analysis of FRET signals in the presence of free donors and acceptors. Biophys. J. 94: 986-1000 Google Scholar
  149. 149.
    Wu, P.G. and L. Brand 1994. Resonance energy transfer: methods and applications, Anal. Biochem. 218: 1-13 Google Scholar
  150. 150.
    Zeug, A., A. Woehler, E. Neher, E.G. Ponimaskin. 2012. Quantitative Intensity-Based FRET Approaches-A Comparative Snapshot. Biophys. J. 103: 1821-1827 ADSGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Visiting Scientist, Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations