Skip to main content

Who discovered the magnetocaloric effect?

Warburg, Weiss, and the connection between magnetism and heat


A magnetic body changes its thermal state when subjected to a changing magnetic field. In particular, if done under adiabatic conditions, its temperature changes. For the past 15 years the magnetocaloric effect has been the focus of significant research due to its possible application for efficient refrigeration near room temperature. At the same time, it has become common knowledge within the magnetic refrigeration research community that the magnetocaloric effect was discovered by the German physicist E. Warburg in 1881. We re-examine the original literature and show that this is a misleading reading of what Warburg did, and we argue that the discovery of the effect should instead be attributed to P. Weiss and A. Piccard in 1917.

This is a preview of subscription content, access via your institution.


  1. 1.

    Barclay, J.A., O. Moze and L. Paterson. 1979. A reciprocating magnetic refrigerator for 2-4 K operation: Initial results. J. Appl. Phys. 50: 5870-5877

    ADS  Article  Google Scholar 

  2. 2.

    Barclay, J.A. 1982. Use of a ferrofluid as the heat-exchange fluid in a magnetic refrigerator. J. Appl. Phys. 53: 2887-2894

    ADS  Article  Google Scholar 

  3. 3.

    Bates, L.F. 1951. The Thermal Effects Associated with Magnetization Processes. J. Phys. Radium 12: 459-470

    Article  Google Scholar 

  4. 4.

    Bates, L.F. and N.P.R. Sherry. 1955. The Direct Separation of the Reversible and Irreversible Components of the Magnetothermal Effect. Proc. Roy. Soc. B 68: 642-648

    ADS  Article  Google Scholar 

  5. 5.

    Brown, G.V. 1976. Magnetic heat pumping near room temperature. J. Appl. Phys. 47: 3673-3680

    ADS  Article  Google Scholar 

  6. 6.

    Caneva, Kenneth L. 2005. ‘Discovery’ as a site for the collective construction of scientific knowledge. Hist. Stud. Phys. Biol. 35: 175-291

    Article  Google Scholar 

  7. 7.

    Cazin, M. Achille. 1875. Mémoire sur les effets thermiques du magnétisme. Ann. Chem. Phys. 6: 493-554

    Google Scholar 

  8. 8.

    Debye, Peter. 1926. Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur. Ann. Phys. (Leipzig) 386: 1154-1160

    ADS  Article  Google Scholar 

  9. 9.

    Delere, Heinrich. 1905. Über die Wärmeentwicklung bei cycklischer Magnetisierung von Eisenkernen. Inaugural-Dissertation. Westfälischen Vereinsdruckerei, Münster i. Westf., pp. 21-30

  10. 10.

    Edison, Thomas. 1888. Pyromagnetic Motor. US Patent US380100

  11. 11.

    Edison, Thomas. 1892. Pyromagnetic Generator. US Patent US476983

  12. 12.

    Ewing, J.A. 1882. On Effects of Retentiveness in the Magnetisation of Iron and Steel. (Preliminary Notice.) Proc. Roy. Soc. 24: 39-45

    Article  Google Scholar 

  13. 13.

    Ewing, J.A. 1885. Experimental Researches in Magnetism. Phil. Trans. R. Soc. Lond. 176: 523-640

    Article  Google Scholar 

  14. 14.

    Faraday, Michael. 1856. Experimental Researches in Electricity. Thirtieth Series. Phil. Trans. R. Soc. Lond. 146: 159-180

    Article  Google Scholar 

  15. 15.

    Giauque, W.F. 1927. A Thermodynamic Treatment of Certain Magnetic Effects. A Proposed Method of Producing Temperatures Considerably Below 1◦ Absolute. J. Am. Chem. Soc. 49: 1864-1870

    Article  Google Scholar 

  16. 16.

    Giauque, W.F. and D.P. MacDougall. 1933. Attainment of Temperatures Below 1◦ Absolute by Demagnetization of Gd2(SO4)3·H2O. Phys. Rev. 43: 768

    ADS  Article  Google Scholar 

  17. 17.

    Gross, Alan G. 1998. Do Disputes over Priority Tell Us Anything about Science? Sci. Context 11: 161-179

    Article  Google Scholar 

  18. 18.

    Gschneidner Jr., K.A. 1984. Past, Present and Future of Rare Earth Metallurgy. J. Less-Common Met. 100: 1-13

    Article  Google Scholar 

  19. 19.

    Gschneidner Jr., K.A., V.K. Pecharsky, A.O. Pecharsky and C.B. Zimm. 1999. Recent developments in magnetic refrigeration. Materials Science Forum 315-317: 69-76

    Article  Google Scholar 

  20. 20.

    Heydweiller, Adolf. 1906. Über die Thomsonsche Magnetisierungswärme; Entgegnung auf eine Bemerkung des Hrn. E. Warburg. Ann. Phys. (Leipzig) 325: 207-208

    ADS  Article  Google Scholar 

  21. 21.

    Herwig, Hermann. 1878. Ueber Wärmeentwickelung durch Drehen von Moleculärmagneten. Ann. Phys. (Leipzig) 4: 177-187

    ADS  Article  Google Scholar 

  22. 22.

    Joule, James. 1843. On the Calorific Effects of Magneto-Electricity, and on the Mechanical Value of Heat. Phil. Mag., Ser. 3, 23: 263-276

    Google Scholar 

  23. 23.

    Keith, Stephen T. and Pierre Quédec. Magnetism and Magnetic Materials. 1992. Out of the Crystal Maze: Chapters from the History of Solid-State Physics, Lillian Hoddeson et al. (eds.). Oxford University Press, New York, pp. 359-442

  24. 24.

    Kuhn, Thomas S. 1962. Historical Structure of Scientific Discovery. Science 136: 760-764

    ADS  Article  Google Scholar 

  25. 25.

    Kuz’min, M.D. and A.M. Tishin. 1992. Magnetocaloric Effect. Part 1: An introduction to various aspects of theory and practice. Cryogenics 32: 545-558

    Article  ADS  Google Scholar 

  26. 26.

    Langevin, M.P. 1905. Magnétisme et théorie des électrons. Ann. Chim. Phys. 5: 70-127

    MATH  Google Scholar 

  27. 27.

    Merton, Robert K. 1957. Priorities in Scientific Discovery: A Chapter in the Sociology of Science. Am. Sociol. Rev. 22: 635-659

    Article  Google Scholar 

  28. 28.

    Myers, H.P. and W. Sucksmith. 1951. The spontaneous magnetization of cobalt. Proc. Roy. Soc. A 207: 427-446

    ADS  Article  Google Scholar 

  29. 29.

    Oxford English Dictionary 3rd edn. 2000. Accessed online (, entry ‘magnetocaloric’

  30. 30.

    Potter, H.H. 1934. The Magneto-Caloric Effect and Other Magnetic Phenomena in Iron. Proc. Roy. Soc. A 146: 362-387

    ADS  Article  Google Scholar 

  31. 31.

    Schwarzschild, Bertram M. 1979. Magnetic refrigerator–heat pump. Phys. Today 32: 18-20

    Google Scholar 

  32. 32.

    Simkin, M.V. and V.P. Roychowdbury. 2003. Read before you cite! Complex Syst. 14: 269-272

    Google Scholar 

  33. 33.

    Simkin, M.V. and V.P. Roychowdbury. 2012. Theory of citing. Handbook of Optimization in Complex Networks: Theory and Applications, M.T. Thai and P.M. Pardalos (eds.). Springer, Dordrecht, The Netherlands, pp. 463-505

  34. 34.

    Smith, Anders et al. 2012. Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy Mat. 2: 1288-1318

    Article  Google Scholar 

  35. 35.

    Stefan, J. 1871. Ueber die Gesetze der electrodynamischen Induction. Wien. Ber. 64: 193-224

    Google Scholar 

  36. 36.

    Stefan, J. 1889. Ueber thermomagnetische Motoren. Ann. Phys. 274: 427-440

    Article  Google Scholar 

  37. 37.

    Steyert, W.A. 1978. Stirling-cycle rotating magnetic refrigerators and heat engines for use near room temperature. J. Appl. Phys. 49: 1216-1226

    ADS  Article  Google Scholar 

  38. 38.

    Tesla, Nikola. 1889. Thermo-Magnetic Motor. US Patent US396121

  39. 39.

    Tesla, Nikola. 1890. Pyromagneto-Electric Generator. US Patent US428057

  40. 40.

    Thomson, William. 1860. Cyclopedia of the Physical Sciences, 2nd edn., J.P. Nichol (ed.). Richard Green and Company, London and Glasgow, 838

  41. 41.

    Thomson, William. 1878. On the Thermoelastic, Thermomagnetic, and Pyroelectric Properties of Matter. Phil. Mag., Ser. 5: 4-27

    Article  Google Scholar 

  42. 42.

    Tishin, A.M., K.A. Gschneidner Jr., and V.K. Pecharsky. 1999. Magnetocaloric effect and heat capacity in the phase-transition region. Phys. Rev. B 59: 503-511

    ADS  Article  Google Scholar 

  43. 43.

    Urbain, Georges, Pierre Weiss and Félix Trombe. 1935. Un nouveau métal ferromagnétique, le gadolinium. Comptes Rendus 200: 2132-2134

    Google Scholar 

  44. 44.

    Warburg, Emil. 1881. Magnetische Untersuchungen. Ueber einige Wirkungen der Coërcitivkraft. Ann. Phys. (Leipzig) 249: 141-164

    ADS  Article  Google Scholar 

  45. 45.

    Warburg, Emil and L. Hönig. 1882. Ueber die Wärme, welche durch periodisch wechselnde Kräfte im Eisen erzeugt wird. Ann. Phys. (Leipzig) 256: 814-835

    ADS  Article  Google Scholar 

  46. 46.

    Warburg, Emil. 1906. Bemerkung zu der Arbeit des Hrn. Delere über die Wärmeentwickelung bei zyklischer Magnetisierung von Eisenkernen. Ann. Phys. (Leipzig) 324: 643-644

    ADS  Article  Google Scholar 

  47. 47.

    Weiss, Pierre. 1907. L’hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. (Paris), 4th Ser. 6: 661-690

    MATH  Google Scholar 

  48. 48.

    Weiss, Pierre and Paul-N. Beck. 1908. Chaleur spécifique et champ moléculaire des substances ferromagnétiques. J. Phys. (Paris), 4th Ser. 7: 249-264

    Google Scholar 

  49. 49.

    Weiss, Pierre and Auguste Piccard. 1917. Le phénomène magnétocalorique. J. Phys. (Paris), 5th Ser. 7: 103-109

    Google Scholar 

  50. 50.

    Weiss, Pierre and Auguste Piccard. 1918. Sur un nouveau phénomène magnétocalorique. Comptes Rendus 166: 352-354

    Google Scholar 

  51. 51.

    Weiss, Pierre. 1921. Le phénomène magnéto-calorique. J. Phys. Radium 2: 161-182

    Article  Google Scholar 

  52. 52.

    Weiss, Pierre and R. Forrer. 1924. Phénomène magnétocalorique. Aimantation apparent et aimantation vraie. Comptes Rendus 178: 1448-1452

    Google Scholar 

  53. 53.

    Weiss, Pierre and R. Forrer. 1926. Aimantation et phénomène magnetocalorique du nickel. Ann. Phys. (Paris) 5: 153-213

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Anders Smith.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, A. Who discovered the magnetocaloric effect?. EPJ H 38, 507–517 (2013).

Download citation


  • Curie Temperature
  • Heat Pump
  • Coercive Force
  • Heat Engine
  • Magnetocaloric Effect