Advertisement

The European Physical Journal H

, Volume 38, Issue 4, pp 519–534 | Cite as

On lower bounds for polarisability

  • H.E. MontgomeryJr.Email author
  • V.I. Pupyshev
Article

Abstract

The response of molecular systems to external fields was one of the first areas studied after development of the new quantum mechanics. Early work by Kirkwood and Buckingham developed polarisability lower bounds that are still used today. This work uses an inequality proposed by Linderberg to develop a treatment of polarisability lower bounds that unifies the work of Kirkwood and Buckingham with Hylleraas’ variational perturbation theory. In particular, the prehistory of the works of Kirkwood and Buckingham is described. Numerical examples are presented to demonstrate the convergence of approximate wavefunctions in the confined atom problem. The applicability of dimensional scaling and its utility in the analysis of confined systems are also discussed.

Keywords

Wave Function Helium Atom Dipole Polarisabilities Ground State Wave Function Diamagnetic Susceptibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlrichs, R. 1973. Asymptotic behaviour of atomic bound state wave functions. J. Math. Phys. 14: 1860-1863 MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Aquino, N., G. Campoy and H.E. Montgomery. 2007. Highly Accurate Solutions for the Confined Hydrogen Atom. Int. J. Quantum. Chem. 107: 1548-1558 ADSCrossRefGoogle Scholar
  3. 3.
    Atanasoff, J.V. 1930. The Dielectric Constant of Helium. Phys. Rev. 36: 1232-1242 ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Bethe, H.A. and E.E. Salpeter. 1957. Quantum mechanics of one- and two-electron atoms. Springer-Verlag, Berlin Google Scholar
  5. 5.
    Bravin, A.V. 1953. Polarisability of atoms and ions with closed shells. J. Exp. Theor. Phys. 25: 147-156. (in Russian) Google Scholar
  6. 6.
    Buckingham, R.A. 1937. The Quantum Theory of Atomic Polarisation. I. Polarisation by a Uniform Field. Proc. Roy.Soc. A 160: 94-113 ADSCrossRefGoogle Scholar
  7. 7.
    Courant, R. and D. Hilbert. 1989. Methods of Mathematical Physics, Partial Differential Equations, Wiley, New York, Vol. 2 Google Scholar
  8. 8.
    Dalgarno, A. 1962. Atomic Polarisabilities and Shielding Factors. Advances in Physics 11: 281-315 ADSCrossRefGoogle Scholar
  9. 9.
    Dalgarno, A. and J.T. Lewis. 1955. The Exact Calculation of Long-Range Forces between Atoms by Perturbation Theory. Proc. Roy. Soc. Lond. A 233: 70-74 MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Dalgarno, A. and J.T. Lewis. 1957. The Quantum Theory of Atomic Polarisation. I. Polarisation by a Uniform Field. Proc. Roy. Soc. A 240: 284-292 ADSCrossRefGoogle Scholar
  11. 11.
    Epstein, P.S. 1926. The Stark Effect from the Point of View of Schroedinger’s Quantum Theory. Phys. Rev. 28: 695-710 ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Epstein, S.T. 1974. The Variation Method in Quantum Chemistry, Academic Press, New York Google Scholar
  13. 13.
    Fock, V.A. 1930. Bemerkung zum Virialsatz. Z. Phys. 63: 855-858 ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Fowler, P.W. 1984. Energy, polarisability and size of confined one-electron systems. Molecular Physics 53: 865-889 ADSCrossRefGoogle Scholar
  15. 15.
    Hassé, H.R. 1930. The polarisability of the helium atom and the lithium ion. Proc. Camb. Phil. Soc. 26: 542-555 ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Hellmann, H. 1935. Zur quantenmechanischen Berechnung der Polarisierbarkeit und der Dispersionskräfte. Acta Physicochim. USSR. 2: 273-290 Google Scholar
  17. 17.
    Hettema, H. 2000. Quantum Chemistry. World Scientific. Singapore Google Scholar
  18. 18.
    Hirschfelder, J.O. 1935. The Polarisability and Related Properties of Molecular Hydrogen and the Diatomic Hydrogen Ion. J. Chem. Phys. 3: 555-556 ADSCrossRefGoogle Scholar
  19. 19.
    Hirschfelder, J.O., W. Byers Brown and S.T. Epstein. 1964 Recent Developments in Perturbation Theory in Advances in Quantum Chemistry. Academic Press. Amsterdam, Vol. 1, pp. 255-374 Google Scholar
  20. 20.
    Hirschfelder, J.O., C.F. Curtiss and R.B. Bird. 1954. Molecular Theory of Gases and Liquids. Wiley, New-York Google Scholar
  21. 21.
    Hylleraas, E.A. 1928. Über den Grundzustand des Heliumatoms. Z. Physik 48: 469-494 ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Hylleraas, E.A. 1930. Über den Grundterm der Zweielectronenprobleme von H−, He, Li+. Be++ usw. Z. Physik. A 65: S.209-225 ADSCrossRefGoogle Scholar
  23. 23.
    Karplus, M. and H.J. Kolker. 1963. Magnetic Susceptibility of Diatomic Molecules. J. Chem. Phys. 38: 1263-1275. ADSCrossRefGoogle Scholar
  24. 24.
    Kirkwood, J.G. 1932. Polarisierbarkeiten, Suszeptibilitäten und van der Waalssche Kräfte der Atome mit mehreren Elektronen. Phys. Z. 33: 57-60 zbMATHGoogle Scholar
  25. 25.
    Knipp, J.K. 1939. On the Calculation of Polarisabilities and Van der Waals Forces for Atoms in S States. Phys. Rev. 55: 1244-1254 ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Lennard-Jones, J.E. 1930. Perturbation Problems in Quantum Mechanics. Proc. R. Soc. A 129: 598-615 ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Löwdin, P.-O. 1970. Some properties of inner projections. Int. J. Quantum. Chem. 5: 231-237 CrossRefGoogle Scholar
  28. 28.
    Miller, W.H. 1969. Improved Equation for Lower Bounds to Eigenvalues; Bounds for the Second-Order Perturbation Energy. J. Chem. Phys. 50: 2758-2762 ADSCrossRefGoogle Scholar
  29. 29.
    Mitroy, J., M.S. Safronova and C.W. Clark. 2010. Theory and applications of atomic and ionic polarisabilities. J. Phys. B: At. Mol. Opt. Phys. 43: 202001-202038 ADSCrossRefGoogle Scholar
  30. 30.
    Montgomery, H.E. 2002. Dynamic dipole polarisabilities of the confined hydrogen atom. Chem. Phys. Lett. 352: 529–532 ADSCrossRefGoogle Scholar
  31. 31.
    Montgomery, H.E. 2011. Variational perturbation treatment of the confined hydrogen atom. Eur. J. Phys. 32: 1275-1284 CrossRefzbMATHGoogle Scholar
  32. 32.
    Montgomery, H.E. and K.D. Sen. 2012. Dipole polarisabilities for a hydrogen atom confined in a penetrable sphere. Phys. Lett. A 376: 1992-1996 ADSCrossRefGoogle Scholar
  33. 33.
    Morgan, J.D. 1979. Schrödinger Operators whose Potentials have Separated Singularities. J. Operator Theory 1: 109-115 MathSciNetzbMATHGoogle Scholar
  34. 34.
    Oppenheimer, J.R. 1928. Three Notes on the Quantum Theory of Aperiodic Effects. Phys. Rev. 31: 66-81 ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    Patil, S.H., K.D. Sen, N.A. Watson and H.E. Montgomery. 2007. Characteristic features of net information measures for constrained coulomb potentials. J. Phys. B: At. Mol. Opt. Phys. 40: 2147-2162 ADSCrossRefGoogle Scholar
  36. 36.
    Pupyshev, V.I., A.V. Scherbinin and N.F. Stepanov. 1997. The Kirkwood–Buckingham variational method and the boundary value problems for the molecular Schrödinger equation. J. Math. Phys. 38: 5626-5633 MathSciNetADSCrossRefzbMATHGoogle Scholar
  37. 37.
    Reed, M. and B. Simon. 1978. Methods of Modern Mathematical Physics, Analysis of Operators. Academic Press. New York, Vol. 4 Google Scholar
  38. 38.
    Rosenberg, L., L. Spruch and T.F. O’Malley. 1960. Upper Bounds on Scattering Lengths When Composite Bound States Exist. Phys. Rev. 188: 184-192 MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Schwartz, C. 1961. Lamb Shift in the Helium Atom. Phys. Rev. 123: 1700-1705 ADSCrossRefGoogle Scholar
  40. 40.
    Sen, K.D., V.I. Pupyshev and H.E. Montgomery, Jr. 2009. Exact Relations for Confined One-Electron Systems. in Advances in Quantum Chemistry: Theory of Confined Quantum Systems: Part I, edited by J.R. Sabin and E. Brändas. Academic Press. USA, Vol. 57, pp. 25-77 Google Scholar
  41. 41.
    Slater, J.C. and J.G. Kirkwood. 1931. The Van Der Waals Forces in Gases. Phys. Rev. 37: 682-697 ADSCrossRefGoogle Scholar
  42. 42.
    Unsöld, A. 1927. Quantentheorie des Wasserstoffmolekülions und der Born-Landéschen Abstoßungskräfte. Z. Physik 43: 563-574 ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    van Vleck, J.H. 1926. The Dielectric Constant and Diamagnetism of Hydrogen and Helium in the New Quantum Mechanics. Proc. Natl. Acad. Sci. 12: 662-670 ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    Vinti, J.P. 1932. A Relation between the Electric and Diamagnetic Susceptibilities of Monatomic Gases. Phys. Rev. 41: 813-817 ADSCrossRefzbMATHGoogle Scholar
  45. 45.
    Waller, I. 1926. Der Starkeffekt zweiter Ordnung bei Wasserstoff und die Rydbergkorrektion der Spektra von He und Li+. Z. Phys. 38: 635-646 ADSCrossRefzbMATHGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Chemistry Program, Centre College DanvilleDanvilleUSA
  2. 2.Laboratory of Molecular Structure and Quantum Mechanics, Department of Chemistry, Lomonosov Moscow State University MoscowMoscowRussia

Personalised recommendations