Advertisement

The European Physical Journal H

, Volume 38, Issue 3, pp 411–431 | Cite as

Superheavy elements and the upper limit of the periodic table: early speculations

  • Helge Kragh
Article

Abstract

Artificially produced chemical elements heavier than uranium have been known for more than seventy years and the number of superheavy elements continues to grow. Presently 26 transuranic elements are known. This paper examines the earliest scientific interest in the very heavy elements and the related question of an upper limit of the periodic system. In the period from the 1880s to the early 1930s, three kinds of questions appealed to a minority of physicists, chemists and astronomers: (1) Why is uranium the heaviest known element? (2) Do there exist transuranic or superheavy elements elsewhere in the universe, such as in stellar interiors? (3) Is there a maximum number of elements, corresponding to a theoretical limit for the periodic system? The early attempts to answer or clarify these questions lacked a foundation in nuclear physics, not to mention the total lack of experimental evidence, which explains why most of them were of a speculative nature. Although the speculations led no nothing, they are interesting in their own right and deserve a place in the history of the physical sciences.

Keywords

Uranium Thorium Atomic Number Heavy Element Periodic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armbruster, P. and G. Münzenberg. 2012. An experimental paradigm opening the world of superheavy elements. Eur. Phys. J. H 37 : 237-310 CrossRefGoogle Scholar
  2. 2.
    Bartel, H.-G. and R.P. Huebener. 2007. Walther Nernst : Pioneer of Physics and Chemistry. World Scientific, New Jersey Google Scholar
  3. 3.
    Baskerville, C. 1904. Thorium; carolinium; berzelium. J. Amer. Chem. Soc. 26 : 922-941 CrossRefGoogle Scholar
  4. 4.
    Bohr, N. 1923a. The structure of the atom. Nature 112 : 29-44 ADSCrossRefGoogle Scholar
  5. 5.
    Bohr, N. 1923b. Linienspektren und Atombau. Ann. Phys. 71 : 228-288 CrossRefGoogle Scholar
  6. 6.
    Bohr, N. 1924. The Theory of Spectra and Atomic Constitution. Cambridge University Press, Cambridge Google Scholar
  7. 7.
    Brauner, B. 1901. Contributions to the chemistry of thorium. Proc. Chem. Soc. 17 : 67-68 Google Scholar
  8. 8.
    Brauner, B. and C. Baskerville. 1904. The complex nature of thorium. Science 19 : 892-893 ADSCrossRefGoogle Scholar
  9. 9.
    De Maria, M. and A. Russo. 1990. Cosmic rays and cosmological speculations in the 1920s : the debate between Jeans and Millikan. In Modern Cosmology in Retrospect, edited by Bruno Bertotti et al. Cambridge University Press, Cambridge, pp. 401-409 Google Scholar
  10. 10.
    Eddington, A.S. 1927-1929. Sub-atomic energy. Mem. Proc. Manchester Lit. Phil. Soc. 72-73 : 101-117 Google Scholar
  11. 11.
    Fermi, E. 1934. Possible production of elements of atomic number higher than 92. Nature 133 : 898-899 ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Fermi, E. 1965. Artificial radioactivity by neutron bombardment. In Nobel Lectures, Physics 1922-1941. Elsevier, Amsterdam, pp. 414-421 Google Scholar
  13. 13.
    Flint, H.T. 1932. The uncertainty principle in modern physics. Nature 129 : 746-747 ADSCrossRefGoogle Scholar
  14. 14.
    Flint, H.T. and O.W. Richardson. 1928. On a minimum proper time and its applications (1) to the number of chemical elements (2) to some uncertainty relations. Proc. Roy. Soc. A 117 : 322-328 Google Scholar
  15. 15.
    Gamow, G. 1942. Concerning the origin of chemical elements. J. Washington Acad. Sci. 32 : 353-355 Google Scholar
  16. 16.
    Gerasimovich, B.P. and D.H. Menzel. 1929. Subatomic energy and stellar radiation. Publ. Astron. Soc. Pacific 41 : 79-97 ADSCrossRefGoogle Scholar
  17. 17.
    Glaser, W. and K. Sitte. 1934. Elementäre Unschärfen, Grenze des periodischen Systems und Massenverhältnis von Elektron und Proton. Zeits. Phys. 87 : 674-688 ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Gordon, W. 1928. Die Energieniveaus des Wasserstoffatoms nach der Diracschen Quantentheorie des Elektrons. Zeits. Phys. 48 : 11-14 ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Graetzer, H.G. and D.L. Anderson. 1971. The Discovery of Nuclear Fission. Van Nostrand, New York Google Scholar
  20. 20.
    Günther, P. 1925. Die kosmologischen Betrachtungen von Nernst. Zeits. Angew. Chem. 37 : 454-457 CrossRefGoogle Scholar
  21. 21.
    Haas, A.E. 1912. Ist die Welt in Raum und Zeit unendlich? Arch. Syst. Philos. 18 : 167-184 Google Scholar
  22. 22.
    Hofmann, S. 2002. On Beyond Uranium : Journey to the End of the Periodic Table. Taylor and Francis, London Google Scholar
  23. 23.
    Hulubei, H. and Y. Cauchois. 1939. Nouvelles recherches sur l’élément 93 naturel. Comptes Rendus 209 : 476-479 Google Scholar
  24. 24.
    Jeans, J.H. 1926a. Stellar opacity and the atomic weight of stellar matter. Month. Not. Roy. Astron. Soc. 86 : 561-574 ADSzbMATHGoogle Scholar
  25. 25.
    Jeans, J.H. 1926b. Recent developments of cosmical physics. Nature 118 : 29-40 ADSCrossRefGoogle Scholar
  26. 26.
    Jeans, J.H. 1928a. Astronomy and Cosmogony. Cambridge University Press, Cambridge Google Scholar
  27. 27.
    Jeans, J.H. 1928b. The physics of the universe. Nature 122 : 689-700 ADSCrossRefGoogle Scholar
  28. 28.
    Jeans, J.H. 1930. The Universe Around Us. Cambridge University Press, Cambridge Google Scholar
  29. 29.
    Jeans, J.H. 1931. The annihilation of matter. Nature 128 : 103-110 ADSCrossRefGoogle Scholar
  30. 30.
    Karpenko, V. 1980. The discovery of supposed new elements : Two centuries of errors. Ambix 27 : 77-102 CrossRefGoogle Scholar
  31. 31.
    Kilmister, C.W. 1994. Eddington’s Search for a Fundamental Theory : A Key to the Universe. Cambridge University Press, Cambridge Google Scholar
  32. 32.
    Kim, D.-W. 2007. Yoshio Nishina : Father of Modern Physics in Japan. Taylor & Francis, New York Google Scholar
  33. 33.
    Kolhörster, W. (1924). Die Durchdringende Strahlung in der Atmosphäre. Henri Grand, Hamburg Google Scholar
  34. 34.
    Kossel, W. 1928. Zur Begrenzung des Systems der Elemente. Naturwiss. 16 : 298-299 ADSCrossRefGoogle Scholar
  35. 35.
    Kragh, H. 2007. Cosmic radioactivity and the age of the universe, 1900-1930. J. Hist. Astron. 38 : 393-412 ADSGoogle Scholar
  36. 36.
    Kragh, H. 2012. Niels Bohr and the Quantum Atom : The Bohr Model of Atomic Structure 1913-1925. Oxford University Press, Oxford Google Scholar
  37. 37.
    Kragh, H. and B. Carazza. 1994. From time atoms to space-time quantization : the idea of discrete time, ca. 1925-1936. Stud. Hist. Phil. Sci. 25 : 437-462 CrossRefGoogle Scholar
  38. 38.
    Kragh, H. and B. Carazza. 1995. A historical note on the maximum atomic number of chemical elements. Ann. Fond. Louis de Broglie 20 : 207-215 Google Scholar
  39. 39.
    Lemaître, G. 1931a. The beginning of the world from the point of view of quantum theory. Nature 127 : 706 ADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Lemaître, G. 1931b. [Untitled]. Nature 128 : 704-706 ADSCrossRefGoogle Scholar
  41. 41.
    Loring, F.H. 1926. Foreshadowing elements of atomic numbers 75, 85, 87, and 93 by means of X-rays. Nature 117 : 153 ADSCrossRefGoogle Scholar
  42. 42.
    Losanitsch, S. 1906. Die Grenzen des Periodischen Systems der Chemischen Elemente. Belgrade : n. p. Google Scholar
  43. 43.
    McLennan, J.C. 1923. On the origin of spectra. Brit. Assoc. Adv. Sci., Report, 25-58. Google Scholar
  44. 44.
    Merrill, P.W. 1933. Cosmic chemistry. Astron. Soc. Pacific Leaflets 2 : 25-28 ADSGoogle Scholar
  45. 45.
    Meyer, V. 1889. The chemical problems of to-day. J. Am. Chem. Soc. 11 : 101-120 CrossRefGoogle Scholar
  46. 46.
    Mills, E.J. 1884. On the numeric of the elements. Philos. Mag. 18 : 393-399 Google Scholar
  47. 47.
    Mills, E.J. 1886. On the numeric of the elements. Part II. Philos. Mag. 21 : 151-157 Google Scholar
  48. 48.
    Mladjenović, M. 1998. The Defining Years in Nuclear Physics, 1932-1960s. Institute of Physics Publishing, Bristol Google Scholar
  49. 49.
    Narlikar, V.V. 1932. The highest atomic number. Nature 129 : 402 ADSCrossRefGoogle Scholar
  50. 50.
    Nash, C. 2005. Atomic and molecular properties of elements 112, 114, and 118. J. Phys. Chem. A 109 : 3493-3500 CrossRefGoogle Scholar
  51. 51.
    Nernst, W. 1928. Physico-chemical considerations in astrophysics. J. Franklin Inst. 206 : 135-142 CrossRefGoogle Scholar
  52. 52.
    Nernst, W. 1935. Physikalische Betrachtungen zur Entwicklungstheorie der Sterne. Zeits. Phys. 97 : 511-534 ADSzbMATHCrossRefGoogle Scholar
  53. 53.
    Oganessian, Yu.T. et al. 2006. Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm + 48Ca fusion reactions. Phys. Rev. C 74 : 044602 ADSCrossRefGoogle Scholar
  54. 54.
    Oganessian, Yu.T. et al. 2010. Synthesis of a new element with atomic number Z = 117. Phys. Rev. Lett. 104 : 142502 ADSCrossRefGoogle Scholar
  55. 55.
    Plaskett, J.S. 1933. The expansion of the universe. J. Roy. Astron. Soc. Can. 27 : 235-252 ADSGoogle Scholar
  56. 56.
    Popov, V.S. 1971. “Collapse to the center” at Z > 137 and critical nuclear charge. Soviet J. Nucl. Phys. 12 : 235-247 Google Scholar
  57. 57.
    Quill, L.L. 1938. The transuranium elements. Chem. Rev. 23 : 87-155 CrossRefGoogle Scholar
  58. 58.
    Rosseland, S. 1923. Origin of radioactive disintegration. Nature 111 : 357 ADSCrossRefGoogle Scholar
  59. 59.
    Rud Nielsen, J. (Ed.) 1977. Niels Bohr. Collected Works. North-Holland, Amsterdam, Vol. 4 Google Scholar
  60. 60.
    Rutherford, E. 1923. The electrical structure of matter. Brit. Assoc. Adv. Sci., Report, 1-24 Google Scholar
  61. 61.
    Sanderson, K. 2006. Heaviest element made – again. Nature online, doi:1038/news061016-4 Google Scholar
  62. 62.
    Schulze, W. 1930. Schwankungen der Höhenstrahlung im Lichte der Nernstschen Transuran-Hypothese. Astron. Nachr. 240 : 433-438 ADSzbMATHCrossRefGoogle Scholar
  63. 63.
    Seaborg, G.T. 1994. Modern Alchemy : Selected Papers of Glenn T. Seaborg. World Scientific, Singapore Google Scholar
  64. 64.
    Sime, R.L. 1996. Lise Meitner : A Life in Physics. University of California Press, Berkeley Google Scholar
  65. 65.
    Sime, R.L. 2000. The search for transuranium elements and the discovery of nuclear fission. Phys. Persp. 2 : 48-62 CrossRefGoogle Scholar
  66. 66.
    Snyder, M.B. 1926a. Universal atomic volcanism and the Millikan cosmic rays. Proc. Amer. Philos. Soc. 65 : 161-169 Google Scholar
  67. 67.
    Snyder, M.B. 1926b. Universal atomic volcanism and the ultimate atom. Proc. Amer. Philos. Soc. 65 : 170-182 Google Scholar
  68. 68.
    Sommerfeld, A. 1924. Atombau und Spektrallinien. Vieweg & Sohn, Braunschweig Google Scholar
  69. 69.
    Speter, M. 1934. Bohemium – an obituary. Science 80 : 588-589 ADSCrossRefGoogle Scholar
  70. 70.
    Stone, S.B. 1930. The origin of the chemical elements. J. Phys. Chem. 34 : 821-841 CrossRefGoogle Scholar
  71. 71.
    Swinne, R. 1926. Das periodische System der chemischen Elemente im Lichte des Atombaus. Zeits. Techn. Phys. 7 : 166-180, 205-216 Google Scholar
  72. 72.
    Tilden, W.A. 1910. The Elements : Speculations as to their Nature and Origin. Harper & Brothers, London Google Scholar
  73. 73.
    Tsaletka, R. and A.V. Lapitskii. 1960. Occurrence of the transuranium elements in nature. Russ. Chem. Rev. 29 : 684-689 ADSCrossRefGoogle Scholar
  74. 74.
    Van Spronsen, J.W. 1969. The Periodic System of the Chemical Elements. Elsevier, Amsterdam Google Scholar
  75. 75.
    Walke, H.J. 1935. Nuclear synthesis and stellar radiation. Philos. Mag. 19 : 341-367 zbMATHGoogle Scholar
  76. 76.
    Walke, H.J. 1936. The atomic weight of element 93. Philos. Mag. 21 : 262-265 Google Scholar
  77. 77.
    Weeks, M.E. 1968. Discovery of the Elements. Easton, Pa. : Journal of Chemical Education Google Scholar
  78. 78.
    Werner, F.G. and J.A. Wheeler. 1958. Superheavy nuclei. Phys. Rev. 109 : 126-144 ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Centre for Science Studies, Aarhus UniversityAarhusDenmark

Personalised recommendations