The European Physical Journal H

, Volume 37, Issue 5, pp 745–792 | Cite as

The history of astrometry

  • Michael PerrymanEmail author


The history of astrometry, the branch of astronomy dealing with the positions of celestial objects, is a lengthy and complex chronicle, having its origins in the earliest records of astronomical observations more than two thousand years ago, and extending to the high accuracy observations being made from space today. Improved star positions progressively opened up and advanced fundamental fields of scientific enquiry, including our understanding of the scale of the solar system, the details of the Earth’s motion through space, and the comprehension and acceptance of Newtonianism. They also proved crucial to the practical task of maritime navigation. Over the past 400 years, during which positional accuracy has improved roughly logarithmically with time, the distances to the nearest stars were triangulated, making use of the extended measurement baseline given by the Earth’s orbit around the Sun. This led to quantifying the extravagantly vast scale of the Universe, to a determination of the physical properties of stars, and to the resulting characterisation of the structure, dynamics and origin of our Galaxy. After a period in the middle years of the twentieth century in which accuracy improvements were greatly hampered by the perturbing effects of the Earth’s atmosphere, ultra-high accuracies of star positions from space platforms have led to a renewed advance in this fundamental science over the past few years.


Proper Motion Meridian Circle Photographic Plate Bright Star Royal Greenwich Observatory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adelman-McCarthy, J.K., M.A. Agüeros and S.S. Allam. 2008. The Sixth Data Release of the Sloan Digital Sky Survey. ApJS 175: 297-313 ADSCrossRefGoogle Scholar
  2. 2.
    Allen, R.H. 1899. Star Names and Their Meanings, edited by G.E. StechertGoogle Scholar
  3. 3.
    Andrade, E.N.D.C. 1950. Wilkins Lecture : Robert Hooke. Proc. Roy. Soc. A 201: 439-473 ADSCrossRefGoogle Scholar
  4. 4.
    Ashbrook, J. 1970. Edmond Halley at St. Helena. Sky & Telescope 40: 86-87 ADSGoogle Scholar
  5. 5.
    Batten, A. 1988. Resolute and Undertaking Characters : The Lives of Wilhelm and Otto Struve. D. Reidel, Dordrecht Google Scholar
  6. 6.
    Beckett, F. and C. Christensen, 1921. Tycho Brahe’s Uraniborg and Stjerneborg on the Island of Hven. Oxford University PressGoogle Scholar
  7. 7.
    Bennett, J. 1987. The Circle Divided : A History of Instruments for Astronomy, Navigation and Surveying. Oxford Google Scholar
  8. 8.
    Bird, J. 1767. The Method of Dividing Astronomical Instruments. LondonGoogle Scholar
  9. 9.
    Blackwell, D.E. 1963. The discovery of stellar aberration. QJRAS 4: 44-46 ADSGoogle Scholar
  10. 10.
    Bradley, J. 1728. A letter to Dr Halley giving account of a new discovered motion of the fixed stars. Phil. Trans. Roy. Soc. 35: 637-661 Google Scholar
  11. 11.
    Brahe, T. 1598. Astronomiae Instauratae Mechanica. Wandesburgi (Translated as Tycho Brahe’s Description of his Instruments and Scientific Work by H. Raeder and B. Strömgren, Copenhagen, 1946)Google Scholar
  12. 12.
    Chapman, A. 1976. Astronomia Practica : the principal instruments and their uses at the Royal Observatory, 1675–1775. Vistas in Astronomy 20: 141-156 ADSCrossRefGoogle Scholar
  13. 13.
    Chapman, A. 1988. The accuracy of angular measuring instruments used in astronomy, 1500–1850. J. History Astronomy 14: 133 ADSGoogle Scholar
  14. 14.
    Chapman, A. 1990. Dividing the Circle. Ellis HorwoodGoogle Scholar
  15. 15.
    Cook, A. 1998. Edmond Halley : Charting the Heavens and the Seas. Clarendon Press, OxfordGoogle Scholar
  16. 16.
    Copernicus, N. 1543. De Revolutionibus Orbium Coelestium. Nuremberg (facsimiles include Verlag R. Oldenbourg, Munich, 1944)Google Scholar
  17. 17.
    Crowe, M.J. 1990. Theories of the World from Antiquity to the Copernican Revolution. Dover Publications, New York Google Scholar
  18. 18.
    de Bruijne, J.H.J. 2012. Science performance of Gaia, ESA’s space-astrometry mission. Ap&SS, p. 68 Google Scholar
  19. 19.
    Dewhirst, D. 1955. Observatories and instrument makers in the eighteenth century. Vistas in Astronomy 1: 139-143 ADSCrossRefGoogle Scholar
  20. 20.
    Dick, W.R. and G. Ruben. 1988. The first successful attempts to determine stellar parallaxes in the light of the Bessel/Struve correspondence,in Mapping the Sky : Past Heritage and Future Directions, edited by S. Debarbat, IAU Symposium, Vol. 133, pp. 119-121. Google Scholar
  21. 21.
    Drake, S. 1957. The Discoveries and Opinions of Galileo. New YorkGoogle Scholar
  22. 22.
    Dyson, F. 1988. Infinite In All Directions. Penguin BooksGoogle Scholar
  23. 23.
    Dyson, F.W. 1915a. Measurement of the distances of the stars. The Observatory 38: 249-254 ADSGoogle Scholar
  24. 24.
    Dyson, F.W. 1915b. Measurement of the distances of the stars. The Observatory 38: 292-299 ADSGoogle Scholar
  25. 25.
    Dyson, F.W., A.S. Eddington and C. Davidson. 1920. A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919. Phil. Trans. Roy. Soc. 220: 291-333 ADSCrossRefGoogle Scholar
  26. 26.
    Eddington, A.S. and A. Fowler. 1913. 1913 March 14 meeting of the Royal Astronomical Society. The Observatory 36: 160-174 Google Scholar
  27. 27.
    Einstein, A. 1915. Erklarung der Perihelionbewegung der Merkur aus der allgemeinen Relativitatstheorie. Sitzungsber. Preuss. Akad. Wiss. 47: 831-839 Google Scholar
  28. 28.
    Espinaase, M. 1956. Robert Hooke. LondonGoogle Scholar
  29. 29.
    Evans, D.S. 1967. Historical notes on astronomy in South Africa. Vistas in Astronomy 9: 265-282 ADSCrossRefGoogle Scholar
  30. 30.
    Evans, D.S. 1988. Under Capricorn. A history of Southern Hemisphere Astronomy. Adam HilgerGoogle Scholar
  31. 31.
    Evans, D.W. 2001. The Carlsberg Meridian Telescope : an astrometric robotic telescope. Astronomische Nachrichten 322: 347-351 ADSCrossRefGoogle Scholar
  32. 32.
    Fernie, J.D. 1975a. The historical search for stellar parallax. JRASC 69: 153 ADSGoogle Scholar
  33. 33.
    Fernie, J.D. 1975b. The historical search for stellar parallax. JRASC 69: 222 ADSGoogle Scholar
  34. 34.
    Flamsteed, J. 1725. Historia Coelestis Britannica. LondonGoogle Scholar
  35. 35.
    Forbes, E.G. 1975. Greenwich Observatory. London.Google Scholar
  36. 36.
    Fraser, P.M. 1970. Eratosthenes of Cyrene. Proc. British Academy 56: 175-207 Google Scholar
  37. 37.
    Fricke, W. 1985a. Friedrich Wilhelm Bessel (1784–1846). Ap&SS 110: 11-19 MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    Fricke, W. 1985b. Fundamental catalogues, past, present and future. Celest. Mech. 36: 207-239 ADSCrossRefGoogle Scholar
  39. 39.
    Fricke, W., A. Kopff, W. Gliese, F. Gondolatsch, T. Lederle, H. Nowacki, W. Strobel and P. Stumpff. 1963. Fourth Fundamental Catalogue (FK4). Veroeffentlichungen des Astronomischen Rechen-Instituts Heidelberg 10: 1 ADSGoogle Scholar
  40. 40.
    Fricke, W. et al. 1988. Fifth fundamental catalogue (FK5). Part 1 : The basic fundamental stars. Veroeffentlichungen des Astronomischen Rechen-Instituts Heidelberg 32: 1-106 ADSGoogle Scholar
  41. 41.
    Fried, D.L. 1966. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am. 56: 1372-1379 ADSCrossRefGoogle Scholar
  42. 42.
    Galilei, G. 1610. Sidereus Nuncius. (‘Siderial Messenger’, translated by Albert van Helden, Univ. of Chicago Press, 1989)Google Scholar
  43. 43.
    Galle, J.G. 1846. Account of the discovery of Le Verrier’s planet Neptune, at Berlin, Sept. 23, 1846. MNRAS 7: 153 ADSGoogle Scholar
  44. 44.
    Gill, D. 1913. History and Description of the Royal Observatory Cape of Good Hope. His Majesty’s Stationery Office, LondonGoogle Scholar
  45. 45.
    Goodman, D. and C. Russell. 1991. The Rise of Scientific Europe 1500–1800. Hodder & StoughtonGoogle Scholar
  46. 46.
    Gregory, J. 1668. Geometriae Pars Universalis. PadovaGoogle Scholar
  47. 47.
    Gunther, R.T. 1932. Astrolabes of the World. OxfordGoogle Scholar
  48. 48.
    Halley, E. 1718. Considerations of the change of latitude of some of the principal fixed stars. Phil. Trans. Roy. Soc. 30: 736-738 Google Scholar
  49. 49.
    Heath, T.L. 1913. Aristarchus of Samos. Oxford University PressGoogle Scholar
  50. 50.
    Heath, T.L. 1932. Greek Astronomy. Dent, London (reprinted by Dover Publications, New York, 1991) Google Scholar
  51. 51.
    Henderson, T. 1839. On the parallax of Alpha Centauri. Mem. RAS 11: 61-68 Google Scholar
  52. 52.
    Herschel, W. 1782. On the parallax of the fixed stars. Phil. Trans. Roy. Soc. 72: 82-111 CrossRefGoogle Scholar
  53. 53.
    Herschel, W. 1783. On the proper motion of the sun and solar system; with an account of several changes that have happened among the fixed stars since the time of Mr. Flamsteed. Phil. Trans. Roy. Soc. 73: 247-283 CrossRefGoogle Scholar
  54. 54.
    Hevelius, J. 1673. Machina Coelestis. DantzigGoogle Scholar
  55. 55.
    Hirshfeld, A. 2001. Parallax : the Race to Measure the Cosmos. W.H. FreemanGoogle Scholar
  56. 56.
    Hockey, T., V. Trimble and T. Williams. 2007. Biographical Encyclopedia of Astronomers. SpringerGoogle Scholar
  57. 57.
    Hoffleit, D. 1949. The quest for stellar parallax. Popular Astronomy 57: 259 ADSGoogle Scholar
  58. 58.
    Høg, E., C. Fabricius, V.V. Makarov, S. Urban, T. Corbin, G. Wycoff, U. Bastian, P. Schwekendiek and A. Wicenec. 2000. The Tycho-2 catalogue of the 2.5 million brightest stars. A&A 355: L27-L30 ADSGoogle Scholar
  59. 59.
    Hooke, R. 1674. An Attempt to Prove the Motion of the Earth from Observations. Royal Society, LondonGoogle Scholar
  60. 60.
    Hoskin, M. 1966. Stellar distances : Galileo’s method and its subsequent history. Indian Journal of History of Science 1: 22-29 Google Scholar
  61. 61.
    Hoskin, M. 1997. The Cambridge Illustrated History of Astronomy. Cambridge University PressGoogle Scholar
  62. 62.
    Howse, D. 1989. Nevil Maskelyne, the Seaman’s Astronomer. CambridgeGoogle Scholar
  63. 63.
    Hunter, A. and E.G. Martin. 1956. Fifty years of trigonometrical parallaxes. Vistas in Astronomy 2: 1023-1030ADSCrossRefGoogle Scholar
  64. 64.
    Ilardi, V. 1976. Eyeglasses and Concave Lenses in Fifteenth-Century Florence and Milan : New Documents. Renaiss. Q. 29: 341-360CrossRefGoogle Scholar
  65. 65.
    Jackson, J. 1922. Early estimations of stellar distances, with special reference to hypothetical parallaxes and to the work of W. Struve. The Observatory 45: 341-352ADSGoogle Scholar
  66. 66.
    Jackson, J. 1956. The distances of the stars : a historical review. Vistas in Astronomy 2: 1018-1022ADSCrossRefGoogle Scholar
  67. 67.
    Jay, P. 2000. Road to Riches, or the Wealth of Man. Weidenfeld & NicolsonGoogle Scholar
  68. 68.
    Jenkins, L.F. 1952. General Catalogue of Trigonometric Stellar Parallaxes. Yale University Observatory, New HavenGoogle Scholar
  69. 69.
    Jenkins, L.F. 1963. General catalogue of trigonometric stellar paralaxes. Yale University Observatory, New HavenGoogle Scholar
  70. 70.
    Jones, B.F. 1976. Gravitational deflection of light : solar eclipse of 30 June 1973 II. Plate reductions. AJ 81: 455-463ADSCrossRefGoogle Scholar
  71. 71.
    Kapteyn, J.C. 1922. On the proper motions of the faint stars and the systematic errors of the Boss fundamental system. Bull. Astron. Inst. Netherlands 1: 69ADSGoogle Scholar
  72. 72.
    King, H.C. 1955. A History of the Telescope. Griffin, LondonGoogle Scholar
  73. 73.
    Lalande, J. 1801. Histoire Céleste Française. ParisGoogle Scholar
  74. 74.
    Lequeux, J. 2009. Le Verrier : Savant magnifique et détesté. EDP SciencesGoogle Scholar
  75. 75.
    Lestrade, J.-F., R.A. Preston, D.L. Jones, R.B. Phillips, A.E.E. Rogers, M.A. Titus, M.J. Rioja and D.C. Gabuzda. 1999. High-precision VLBI astrometry of radio-emitting stars. A&A 344: 1014-1026ADSGoogle Scholar
  76. 76.
    Lindegren, L. 1978. Photoelectric astrometry : a comparison of methods for precise image location, edited by F.V. Prochazka, R.H. Tucker, in IAU Colloq. 48 : Modern Astrometry, pp. 197–217Google Scholar
  77. 77.
    Lindegren, L. 1980. Atmospheric limitations of narrow-field optical astrometry. A&A 89: 41-47ADSGoogle Scholar
  78. 78.
    Lindegren, L., F. Mignard, S. Söderhjelm, M. Badiali, H.-H. Bernstein, P. Lampens, R. Pannunzio, F. Arenou, P.L. Bernacca, J.L. Falin, M. Froeschlé, J. Kovalevsky, C. Martin, M.A.C. Perryman and R. Wielen. 1997. Double star data in the Hipparcos Catalogue. A&A 323: L53-L56ADSGoogle Scholar
  79. 79.
    MacPike, E.F. 1937. The Correspondence and Papers of Edmond Halley. LondonGoogle Scholar
  80. 80.
    McArthur, B.E., G.F. Benedict R. Barnes E. Martioli S. Korzennik E. Nelan and R.P. Butler. 2010. New observational constraints on the υ Andromedae system with data from the Hubble Space Telescope and Hobby–Eberly Telescope. ApJ 715: 1203-1220ADSCrossRefGoogle Scholar
  81. 81.
    McCrea, W.H. 1963a. James Bradley, 1693–1762. QJRAS 4: 38-40ADSGoogle Scholar
  82. 82.
    McCrea, W.H. 1963b. Significance of the discovery of aberration. QJRAS 4: 41ADSGoogle Scholar
  83. 83.
    McKeon, R. 1971. Histoire de la réalisation du micromètre. Physics 13: 225-288MathSciNetGoogle Scholar
  84. 84.
    McKeon, R. 1972. Les débuts de l’astronomie de précision. Physics 14: 217-242MathSciNetGoogle Scholar
  85. 85.
    Michell, J. 1767. Inquiry into the probable parallax, and magnitude of the fixed stars, from the quantity of light which they afford us, and the particular circumstances of their situation. Phil. Trans. Roy. Soc. 57: 234-264CrossRefGoogle Scholar
  86. 86.
    Monet, D.G., S.E. Levine and B. Canzian. 2003. The USNO-B Catalog. AJ 125: 984-993ADSCrossRefGoogle Scholar
  87. 87.
    Murray, C.A. 1988a. Obituary : Walter Fricke. The Observatory 108: 251-251ADSGoogle Scholar
  88. 88.
    Murray, C.A. 1988b. The distances to the stars. The Observatory 108: 199-217ADSGoogle Scholar
  89. 89.
    Nielsen, A.V. 1968. Ole Rømer and his meridian circle. Vistas in Astronomy 10: 105-112ADSCrossRefGoogle Scholar
  90. 90.
    Perryman, M.A.C. 2009. Astronomical Applications of Astrometry : Ten Years of Exploitation of the Hipparcos Satellite Data. Cambridge University PressGoogle Scholar
  91. 91.
    Perryman, M.A.C. 2010. The Making of History’s Greatest Star Map. Springer-VerlagGoogle Scholar
  92. 92.
    Perryman, M.A.C. 2011. EAS Tycho Brahe prize lecture 2011. Hipparcos : a retrospective. A&A Rev. 19: 45ADSCrossRefGoogle Scholar
  93. 93.
    Perryman, M.A.C. et al. 2001. Gaia : composition, formation and evolution of the Galaxy. A&A 369: 339-363ADSCrossRefGoogle Scholar
  94. 94.
    Perryman, M.A.C. et al. 1997a. The Hipparcos and Tycho Catalogues : Astrometric and Photometric Star Catalogues Derived from the ESA Hipparcos Space Astrometry Mission. ESAGoogle Scholar
  95. 95.
    Perryman, M.A.C. et al. 1997b. The Hipparcos Catalogue. A&A 323: L49-L52ADSGoogle Scholar
  96. 96.
    Ramsden, J. 1777. Description of an Engine for dividing Mathematical Instruments. LondonGoogle Scholar
  97. 97.
    Rosen, E. 1956. The invention of eyeglasses. Journal for the History of Medicine and Allied Sciences 11: 13-46CrossRefGoogle Scholar
  98. 98.
    Roseveare, N.T. 1982. Mercury’s perihelion, from Le Verrier to Einstein. Oxford University PressGoogle Scholar
  99. 99.
    Ruggles, C.L.N. 1997. Astronomy in Prehistoric Britain and Ireland. Yale University PressGoogle Scholar
  100. 100.
    Saito, Y. 2005. A discussion of Rømer’s discovery concerning the speed of light. Association of Asia Pacific Physical Societies Bulletin 15: 9-17Google Scholar
  101. 101.
    Saliba, G. 1994. A History of Arabic Astronomy : Planetary Theory during the Golden Age of Islam. New York University Press.Google Scholar
  102. 102.
    Schlesinger, F. 1927. Some aspects of astronomical photography of precision (George Darwin Lecture). MNRAS 87: 506-523ADSGoogle Scholar
  103. 103.
    Schwan, H. 2002. Systematic relations between the Hipparcos catalogue and major (fundamental) catalogues of the 20th century. A&A 387: 1123-1134ADSCrossRefGoogle Scholar
  104. 104.
    Shao, M. and M.M. Colavita. 1992. Potential of long-baseline infrared interferometry for narrow-angle astrometry. A&A 262: 353-358ADSGoogle Scholar
  105. 105.
    Shu, F. 1982. The Physical Universe. University Science Books, CaliforniaGoogle Scholar
  106. 106.
    Sidgwick, J.B. 1954. William Herschel : Explorer of the Heavens. Faber & Faber, LondonGoogle Scholar
  107. 107.
    Skrutskie, M.F., R.M. Cutri and R. Stiening. 2006. The Two Micron All Sky Survey (2MASS). AJ 131: 1163-1183ADSCrossRefGoogle Scholar
  108. 108.
    Smeaton, J. 1786. Observations on the graduations of astronomical instruments. Phil. Trans. Roy. Soc. 76: 1-47CrossRefGoogle Scholar
  109. 109.
    Sobel, D. 1996. Longitude. Fourth EstateGoogle Scholar
  110. 110.
    Stewart, A.B. 1964. The discovery of stellar aberration. Sci. Am. 210: 100-108CrossRefGoogle Scholar
  111. 111.
    Thoren, V.E. 1990. A Biography of Tycho Brahe. Cambridge University PressGoogle Scholar
  112. 112.
    Toomer, G.J. 1984. Ptolomy’s Almagest. Springer-Verlag, New York (translation)Google Scholar
  113. 113.
    Troughton, E. 1809. An account of a method of dividing astronomical instruments. Phil. Trans. Roy. Soc. 99: 105-143CrossRefGoogle Scholar
  114. 114.
    Turner, H.H. 1912. The Great Star Map. John MurrayGoogle Scholar
  115. 115.
    van Altena, W.F., J.T. Lee and E.D. Hoffleit. 1995. The General Catalogue of Trigonometric Stellar Parallaxes. Yale University Observatory, 4th EditionGoogle Scholar
  116. 116.
    van Helden, A. 1977a. The development of compound eyepieces, 1640-1670. J. History Astronomy 8 : 26Google Scholar
  117. 117.
    van Helden, A. 1977b. The invention of the telescope. Trans. Am. Philos. Soc. 67.Google Scholar
  118. 118.
    van Helden, A. 1985. Measuring the Universe : Cosmic Dimensions from Aristarchus to Halley. University of Chicago PressGoogle Scholar
  119. 119.
    van Leeuwen, F. 2010. Hipparcos, the new reduction. Space Sci. Rev. 151: 209-226ADSCrossRefGoogle Scholar
  120. 120.
    van Leeuwen, F., D.W. Evans, M. Grenon, V. Grossmann, F. Mignard and M.A.C. Perryman. 1997. The Hipparcos mission : photometric data. A&A 323: L61-L64ADSGoogle Scholar
  121. 121.
    Volkoff, I., E. Franzgrote and A.D. Larsen. 1971. Johannes Hevelius and his Catalogue of Stars. Brigham Young University PressGoogle Scholar
  122. 122.
    Water, D.W. 1958. The Art of Navigation in England in Elizabethan and Early Stuart Times. LondonGoogle Scholar
  123. 123.
    William IV, Landgrave of Hesse Kassel. 1618. Coeli et Siderium in eo Errantium Observationes Hassicae. Leiden Google Scholar
  124. 124.
    Williams, M.E.W. 1979. Flamsteed’s alleged measurement of annual parallax for the pole star. J. History Astronomy 10: 102ADSGoogle Scholar
  125. 125.
    Zacharias, N., S.E. Urban, M.I. Zacharias, G.L. Wycoff, D.M. Hall, D.G. Monet and T.J. Rafferty. 2004. The Second USNO CCD Astrograph Catalog (UCAC2). AJ 127: 3043-3059ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of Bristol, School of PhysicsBristolUK

Personalised recommendations