Skip to main content
Log in

Clarifying the link between von Neumann and thermodynamic entropies

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

The state of a quantum system being described by a density operator ρ, quantum statistical mechanics calls the quantity  −kTr(ρlnρ), introduced by von Neumann, its von Neumann or statistical entropy. A 1999 Shenker’s paper initiated a debate about its link with the entropy of phenomenological thermodynamics. Referring to Gibbs’s and von Neumann’s founding texts, we replace von Neumann’s 1932 contribution in its historical context, after Gibbs’s 1902 treatise and before the creation of the information entropy concept, which places boundaries into the debate. Reexamining von Neumann’s reasoning, we stress that the part of his reasoning implied in the debate mainly uses thermodynamics, not quantum mechanics, and identify two implicit postulates. We thoroughly examine Shenker’s and ensuing papers, insisting upon the presence of open thermodynamical subsystems, imposing us the use of the chemical potential concept. We briefly mention Landau’s approach to the quantum entropy. On the whole, it is shown that von Neumann’s viewpoint is right, and why Shenker’s claim that von Neumann entropy “is not the quantum-mechanical correlate of thermodynamic entropy” can’t be retained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balian, Roger. 1982, Du Microscopique au Macroscopique. Ellipses, Paris. Vol. 1, Eng. edn. : 1991. From Microphysics to Macrophysics, Methods and Applications of Statistical Physics. Springer, Berlin, Vol. 1

  2. Butterfield, Jeremy and John Earman. 2007. Handbook of the Philosophy of Sciences, edited by Gabbay, D.M., P. Thagard and J. Woods, Philosophy of Physics, Part. B, edited by J. Butterfield and J. Earman. Elsevier

  3. Bruhat, Georges. 1962. Thermodynamique, 5th edn., totally reorganized by Alfred Kastler, Masson, Paris

  4. Callen, Herbert B. 1966. Thermodynamics. 6th edn. Wiley, New York

  5. Denis, Eric and Travis Norsen. 2004. Quantum Theory : Interpretation Cannot be Avoided, arXiv:quant-ph/0408178v1

  6. Dirac, Paul A.M. 1930. The principles of quantum mechanics. Oxford University Press, London

  7. Einstein, Albert. 1914. Beiträge zur Quantentheorie. Deuts. Phys. Gesell. Verhand. 16 : 820–828

    Google Scholar 

  8. Feshbach, Herman. 1987. Small systems : when does thermodynamics apply? Phys. Today 30 : 9–11

    Article  Google Scholar 

  9. Feynman, Richard P. 1972. Statistical Mechanics W.A. Benjamin, Reading (USA)

  10. Fuchs, Christopher A. and Asher Peres. 2000. Quantum theory needs no “interpretation”, Phys. Today 53 : 70–71

    Article  Google Scholar 

  11. Gibbs, Josiah W. 1875. On the Equilibrium of Heterogeneous Substances. Trans. Con. Acad. 3 : 108–248 (Oct. 1875–May 1876) and 343-524 (May 1877–July 1878)

    Google Scholar 

  12. Gibbs, Josiah W. 1902. Elementary Principles in Statistical Mechanics developed with especial reference to the rational foundation of thermodynamics. Scribner’s sons, New York

  13. Hagar, A. 2004. Chance and time, thesis, University of British Columbia

  14. Hemmo, Meir and Orly Shenker. 2006. Von Neumann’s entropy does not correspond to thermodynamic entropy. Phil. Sci. 73 : 153–174

    Article  MathSciNet  Google Scholar 

  15. Henderson, Leah. 2003. The Von Neumann entropy : a reply to Shenker. Br. J. Phil. Sci. 54 : 291–296

    Article  MATH  Google Scholar 

  16. Jaynes, Edwin T. 1957a. Information theory and statistical mechanics. Phys. Rev. 106 : 620–630

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Jaynes, Edwin T. 1957b. Information theory and statistical mechanics II. Phys. Rev. 108 : 171–190

    Article  MathSciNet  ADS  Google Scholar 

  18. Jaynes, Edwin T. 1965. Gibbs versus Boltzmann entropies. Amer. J. Phys. 33 : 391–398

    Article  ADS  MATH  Google Scholar 

  19. Jaynes, Edwin T. 1992. Maximum Entropy and Bayesian Methods, edited by C.R. Smith, G.J. Erickson, P.O. Neudorfer, Kluwer Academic Publishers, Dordrecht, Holland, p. 1–22

  20. Jaynes, Edwin T. 2003. Probability Theory. Cambridge University Press, New York

  21. Kittel, C. 1969. Thermal Physics. Wiley, New York

  22. Landau, Lev D. and Evgeny M. Lifchitz. 1958. Course of Theoretical Physics. Statistical Physics. Engl. transl. Pergamon Press, London, Vol. 5

  23. Landau, Lev D. and Evgeny M. Lifchitz. 1967. Course of Theoretical Physics, Mécanique Quantique, Théorie non relativiste, French edn. : Mir Publishers, Moscow, Vol. 3

  24. Lebowitz, Joel L. 2007. From Time-Symmetric Microscopic Dynamics to Time-Asymmetric Macroscopic Behavior : An Overview. Boltzmann’s Legacy – Proceedings of Vienna Conference on Boltzmann, pp. 63–89, arXiv:0709.0724v1

  25. Lebowitz, Joel L. 2010. Approach to thermal equilibrium of macroscopic quantum systems, Phys. Rev. E 81 : 011109, 1-9

    Google Scholar 

  26. Messiah, Albert. 1965. Mécanique Quantique. Dunod, Paris, Vol. 1

  27. Nielsen, Michael A. and Isaac L. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge

  28. Penrose, Oliver. 1979. Foundations of statistical mechanics, Rep. Prog. Phys. 42 : 1937–2006

    Article  ADS  Google Scholar 

  29. Peres, Asher. 2002. Quantum Theory : Concepts and Methods. 2nd edn. Kluwer Academic Publishers, Dordrecht

  30. Poincaré, Henri. 1902. La Science et l’Hypothèse, Flammarion. Paris. Reprint : 1992. Editions de la Bohème, Rueil-Malmaison

  31. Poincaré, Henri. 1908. Thermodynamique, Gauthier-Villars. Paris, 2nd edn. Reprint : 1995. Editions Jacques Gabay, Paris

  32. Reif, Frederick. 1965. Fundamental of Statistical and Thermal Physics. McGraw Hill Kogakusha, Tokyo

  33. Shannon, Claude E. 1948. A Mathematical Theory of Communication. Bell Syst. Tech. J. 27 : 379–423 and 623-656

    MathSciNet  MATH  Google Scholar 

  34. Shenker, Orly R. 1999. Is  −kTr(ρlnρ) the Entropy in Quantum Mechanics? Br. J. Phil. Sci. 50 : 33–48

    Article  MathSciNet  MATH  Google Scholar 

  35. Sommerfeld, Arnold. 1950. Thermodynamics and Statistical Mechanics, Engl. trans., Academic Press, San Diego. (Chap. 1, Sec. 4 distinguishes between the use of the word energy by Aristotle and its introduction into the language of science by Rankine (1853))

  36. Von Neumann, John. 1932. Mathematische Grundlagen der Quantenmechanik. Berlin : Springer. Engl. transl. 1955. Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Deville.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deville, A., Deville, Y. Clarifying the link between von Neumann and thermodynamic entropies. EPJ H 38, 57–81 (2013). https://doi.org/10.1140/epjh/e2012-30032-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2012-30032-0

Keywords

Navigation