Advertisement

The European Physical Journal H

, Volume 38, Issue 1, pp 57–81 | Cite as

Clarifying the link between von Neumann and thermodynamic entropies

  • Alain DevilleEmail author
  • Yannick Deville
Article

Abstract

The state of a quantum system being described by a density operator ρ, quantum statistical mechanics calls the quantity  −kTr(ρlnρ), introduced by von Neumann, its von Neumann or statistical entropy. A 1999 Shenker’s paper initiated a debate about its link with the entropy of phenomenological thermodynamics. Referring to Gibbs’s and von Neumann’s founding texts, we replace von Neumann’s 1932 contribution in its historical context, after Gibbs’s 1902 treatise and before the creation of the information entropy concept, which places boundaries into the debate. Reexamining von Neumann’s reasoning, we stress that the part of his reasoning implied in the debate mainly uses thermodynamics, not quantum mechanics, and identify two implicit postulates. We thoroughly examine Shenker’s and ensuing papers, insisting upon the presence of open thermodynamical subsystems, imposing us the use of the chemical potential concept. We briefly mention Landau’s approach to the quantum entropy. On the whole, it is shown that von Neumann’s viewpoint is right, and why Shenker’s claim that von Neumann entropy “is not the quantum-mechanical correlate of thermodynamic entropy” can’t be retained.

Keywords

Entropy Pure State Density Operator Quantum Statistical Mechanic Quantum Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balian, Roger. 1982, Du Microscopique au Macroscopique. Ellipses, Paris. Vol. 1, Eng. edn. : 1991. From Microphysics to Macrophysics, Methods and Applications of Statistical Physics. Springer, Berlin, Vol. 1Google Scholar
  2. 2.
    Butterfield, Jeremy and John Earman. 2007. Handbook of the Philosophy of Sciences, edited by Gabbay, D.M., P. Thagard and J. Woods, Philosophy of Physics, Part. B, edited by J. Butterfield and J. Earman. ElsevierGoogle Scholar
  3. 3.
    Bruhat, Georges. 1962. Thermodynamique, 5th edn., totally reorganized by Alfred Kastler, Masson, ParisGoogle Scholar
  4. 4.
    Callen, Herbert B. 1966. Thermodynamics. 6th edn. Wiley, New YorkGoogle Scholar
  5. 5.
    Denis, Eric and Travis Norsen. 2004. Quantum Theory : Interpretation Cannot be Avoided, arXiv:quant-ph/0408178v1Google Scholar
  6. 6.
    Dirac, Paul A.M. 1930. The principles of quantum mechanics. Oxford University Press, LondonGoogle Scholar
  7. 7.
    Einstein, Albert. 1914. Beiträge zur Quantentheorie. Deuts. Phys. Gesell. Verhand. 16 : 820–828Google Scholar
  8. 8.
    Feshbach, Herman. 1987. Small systems : when does thermodynamics apply? Phys. Today 30 : 9–11CrossRefGoogle Scholar
  9. 9.
    Feynman, Richard P. 1972. Statistical Mechanics W.A. Benjamin, Reading (USA)Google Scholar
  10. 10.
    Fuchs, Christopher A. and Asher Peres. 2000. Quantum theory needs no “interpretation”, Phys. Today 53 : 70–71CrossRefGoogle Scholar
  11. 11.
    Gibbs, Josiah W. 1875. On the Equilibrium of Heterogeneous Substances. Trans. Con. Acad. 3 : 108–248 (Oct. 1875–May 1876) and 343-524 (May 1877–July 1878)Google Scholar
  12. 12.
    Gibbs, Josiah W. 1902. Elementary Principles in Statistical Mechanics developed with especial reference to the rational foundation of thermodynamics. Scribner’s sons, New YorkGoogle Scholar
  13. 13.
    Hagar, A. 2004. Chance and time, thesis, University of British ColumbiaGoogle Scholar
  14. 14.
    Hemmo, Meir and Orly Shenker. 2006. Von Neumann’s entropy does not correspond to thermodynamic entropy. Phil. Sci. 73 : 153–174MathSciNetCrossRefGoogle Scholar
  15. 15.
    Henderson, Leah. 2003. The Von Neumann entropy : a reply to Shenker. Br. J. Phil. Sci. 54 : 291–296zbMATHCrossRefGoogle Scholar
  16. 16.
    Jaynes, Edwin T. 1957a. Information theory and statistical mechanics. Phys. Rev. 106 : 620–630MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Jaynes, Edwin T. 1957b. Information theory and statistical mechanics II. Phys. Rev. 108 : 171–190MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Jaynes, Edwin T. 1965. Gibbs versus Boltzmann entropies. Amer. J. Phys. 33 : 391–398ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Jaynes, Edwin T. 1992. Maximum Entropy and Bayesian Methods, edited by C.R. Smith, G.J. Erickson, P.O. Neudorfer, Kluwer Academic Publishers, Dordrecht, Holland, p. 1–22Google Scholar
  20. 20.
    Jaynes, Edwin T. 2003. Probability Theory. Cambridge University Press, New YorkGoogle Scholar
  21. 21.
    Kittel, C. 1969. Thermal Physics. Wiley, New YorkGoogle Scholar
  22. 22.
    Landau, Lev D. and Evgeny M. Lifchitz. 1958. Course of Theoretical Physics. Statistical Physics. Engl. transl. Pergamon Press, London, Vol. 5Google Scholar
  23. 23.
    Landau, Lev D. and Evgeny M. Lifchitz. 1967. Course of Theoretical Physics, Mécanique Quantique, Théorie non relativiste, French edn. : Mir Publishers, Moscow, Vol. 3Google Scholar
  24. 24.
    Lebowitz, Joel L. 2007. From Time-Symmetric Microscopic Dynamics to Time-Asymmetric Macroscopic Behavior : An Overview. Boltzmann’s Legacy – Proceedings of Vienna Conference on Boltzmann, pp. 63–89, arXiv:0709.0724v1Google Scholar
  25. 25.
    Lebowitz, Joel L. 2010. Approach to thermal equilibrium of macroscopic quantum systems, Phys. Rev. E 81 : 011109, 1-9Google Scholar
  26. 26.
    Messiah, Albert. 1965. Mécanique Quantique. Dunod, Paris, Vol. 1Google Scholar
  27. 27.
    Nielsen, Michael A. and Isaac L. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge University Press, CambridgeGoogle Scholar
  28. 28.
    Penrose, Oliver. 1979. Foundations of statistical mechanics, Rep. Prog. Phys. 42 : 1937–2006ADSCrossRefGoogle Scholar
  29. 29.
    Peres, Asher. 2002. Quantum Theory : Concepts and Methods. 2nd edn. Kluwer Academic Publishers, DordrechtGoogle Scholar
  30. 30.
    Poincaré, Henri. 1902. La Science et l’Hypothèse, Flammarion. Paris. Reprint : 1992. Editions de la Bohème, Rueil-MalmaisonGoogle Scholar
  31. 31.
    Poincaré, Henri. 1908. Thermodynamique, Gauthier-Villars. Paris, 2nd edn. Reprint : 1995. Editions Jacques Gabay, ParisGoogle Scholar
  32. 32.
    Reif, Frederick. 1965. Fundamental of Statistical and Thermal Physics. McGraw Hill Kogakusha, TokyoGoogle Scholar
  33. 33.
    Shannon, Claude E. 1948. A Mathematical Theory of Communication. Bell Syst. Tech. J. 27 : 379–423 and 623-656MathSciNetzbMATHGoogle Scholar
  34. 34.
    Shenker, Orly R. 1999. Is  −kTr(ρlnρ) the Entropy in Quantum Mechanics? Br. J. Phil. Sci. 50 : 33–48MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Sommerfeld, Arnold. 1950. Thermodynamics and Statistical Mechanics, Engl. trans., Academic Press, San Diego. (Chap. 1, Sec. 4 distinguishes between the use of the word energy by Aristotle and its introduction into the language of science by Rankine (1853))Google Scholar
  36. 36.
    Von Neumann, John. 1932. Mathematische Grundlagen der Quantenmechanik. Berlin : Springer. Engl. transl. 1955. Mathematical Foundations of Quantum Mechanics. Princeton University Press, PrincetonGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Aix-Marseille Univ, IM2NP, Campus Scientifique Saint-JérômeMarseilleFrance
  2. 2.Université de Toulouse, UPS-CNRS-OMP, Institut de Recherche en Astrophysique et Planétologie (IRAP)ToulouseFrance

Personalised recommendations