The European Physical Journal H

, Volume 37, Issue 3, pp 413–458 | Cite as

Direct observations of galactic cosmic rays

  • Dietrich MüllerEmail author
Part of the following topical collections:
  1. Topical issue: Cosmic rays, gamma rays, and neutrinos: a survey of 100 years of research


The mysterious “radiation ... entering our atmosphere from above” discovered by Hess in 1912 is now known to be dominated by relativistic charged particles, mostly with energies in the GeV-range, but extending to energies higher by many orders of magnitude. As none of these particles can penetrate the earth’s atmosphere without interaction, detailed studies of their composition and energy spectra require observations with high-altitude balloons or spacecraft. This became possible only towards the middle of the 20th century. The direct measurements have now revealed much detail about the Galactic cosmic rays below 1015eV, but do not yet provide much overlap with the air-shower region of energies. A historic overview of the measurements is given, beginning with the realization that the majority of the cosmic rays are protons. The discovery and astrophysical significance of the heavier nuclei, and of the ultra-heavy nuclei beyond iron and up to the actinides, are then described, and measurements of the isotopic composition are discussed. Observations of the individual energy spectra are reviewed, and finally, the detection of electrons, positrons, and anti-protons in the cosmic rays, and the searches for exotic or unusual phenomena are summarized. Emphasis is given to the fact that all of these discoveries have become possible through the evolution of increasingly sophisticated detection techniques, a process that is continuing through the present time. The precise knowledge of the abundance distributions of the elements in the cosmic rays and of their isotopic composition permits a comparison with the “universal abundance scale” and provides strong constraints on the origin of the cosmic-ray material in the interstellar medium. “Clock-isotopes” reveal the time history of the particles. The shapes of the energy spectra of the individual cosmic-ray components are related to evolving ideas about particle acceleration and propagation in the Galaxy. In conclusion, prospects for future work are briefly discussed.


Heavy Nucleus Advance Composition Explorer Cherenkov Counter Transition Radiation Detector Positron Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, K. et al. 2011. Measurement of the cosmic-ray antiproton spectrum at solar minimum with a long-duration balloon flight over Antarctica. arXiv:1107.6000Google Scholar
  2. Abe, K. et al. 2012. Search for Antihelium with the BESS-Polar Spectrometer. arXiv:1201.2967v1Google Scholar
  3. Ackermann, M. et al. 2010. Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV. Phys. Rev. D 82 : 092004 ADSCrossRefGoogle Scholar
  4. Ackermann, M. et al. 2012. Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Phys. Rev. Lett. 108 : 011103 ADSCrossRefGoogle Scholar
  5. Adams, F.C. et al. 1997. Constraints on the intergalactic transport of cosmic rays. Astrophys. J. 491 : 6–12 ADSCrossRefGoogle Scholar
  6. Adriani, O. et al. 2009a. The PAMELA space mission. Nucl. Phys. B (Proc. Suppl.) 188 : 296–298 CrossRefGoogle Scholar
  7. Adriani, O. et al. 2009b. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458 : 607–609 ADSCrossRefGoogle Scholar
  8. Adriani, O. et al. 2011a. The Cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV. Phys. Rev. Lett. 106 : 201101 ADSCrossRefGoogle Scholar
  9. Adriani, O. et al. 2011b. PAMELA measurements of cosmic-ray proton and helium spectra. Science 332 : 69–72 ADSCrossRefGoogle Scholar
  10. Aguilar, M. et al. 2002. The alpha magnetic spectrometer (AMS) on the international space station : Part I results from the test flight on the space shuttle. Phys. Rep. 366 : 331–405 ADSCrossRefGoogle Scholar
  11. Aguilar, M. et al. 2007. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01. Phys. Lett. B 646 : 145–154 ADSCrossRefGoogle Scholar
  12. Aharonian, I. et al. 2008. Energy spectrum of cosmic-ray electrons at TeV energies. Phys. Rev. Lett. 101 : 261104 ADSCrossRefGoogle Scholar
  13. Ahlen, S.P. et al. 2000. Measurement of the isotopic composition of cosmic-ray helium, lithium, beryllium, and boron up to 1700 MeV per atomic mass unit. Astrophys. J. 534 : 757–769 ADSCrossRefGoogle Scholar
  14. Ahn, H.S. et al. 2007. The cosmic ray energetics and mass (CREAM) instrument. Nucl. Instrum. Methods Phys. Res. A 579 : 1034–1053 ADSCrossRefGoogle Scholar
  15. Ahn, H.S. et al. 2008. Measurements of cosmic ray secondary nuclei at high energy by the first flight of the CREAM balloon-borne experiment. Astropart. Phys. 30 : 133–141 ADSCrossRefGoogle Scholar
  16. Ahn, H. S. et al. 2010. Discrepant hardening observed in cosmic-ray elemental spectra. Astrophys. J. 714 : L89–L93 ADSCrossRefGoogle Scholar
  17. Alcaraz, J. et al. 1999. Search for antihelium in cosmic rays. Phys. Lett. B 461 : 387–396 ADSCrossRefGoogle Scholar
  18. Alcaraz, J. et al. 2000. Leptons in near earth orbit. Phys. Lett. B 484 : 10–22 ADSCrossRefGoogle Scholar
  19. Alfven, H. 1950. On the solar origin of cosmic radiation. Phys. Rev. 77 : 375–379 ADSCrossRefGoogle Scholar
  20. Alvarez, L. and A.H. Compton. 1933. A positively charged component of cosmic rays. Phys. Rev. 43 : 835–836 ADSCrossRefGoogle Scholar
  21. Amsler, C. et al. 2008. Review of particle physics. Phys. Lett. B 667 : 1 ADSCrossRefGoogle Scholar
  22. Anand, K.C. and R.R. Daniel. S.A. Stephens. 1975. Energy-spectrum of cosmic-ray electrons between 10 and 1000 GeV. Astrophys. Space Sci. 36 : 169–175 ADSCrossRefGoogle Scholar
  23. Anders, E. and M. Ebihara. 1982. Solar-system abundances of the elements. Geochim. Cosmochim. Acta 46 : 2363–2380 ADSCrossRefGoogle Scholar
  24. Apanasenko, A.V. et al. 2001. Composition and energy spectra of cosmic-ray primaries in the energy range 1013–1015 eV/particle observed by Japanese-Russian joint balloon experiment. Astropart. Phys. 16 : 13–46 ADSCrossRefGoogle Scholar
  25. Asakimori, K. et al. 1998. Cosmic-ray proton and helium spectra : Results from the JACEE experiment. Astrophys. J. 502 : 278–283 ADSCrossRefGoogle Scholar
  26. Ave, M. et al. 2008. Composition of primary cosmic-ray nuclei at high energies. Astrophys. J. 678 : 262–273 ADSCrossRefGoogle Scholar
  27. Ave, M. et al. 2009. Propagation and source energy spectra of cosmic ray nuclei at high energies. Astrophys. J. 697 : 106–114 ADSCrossRefGoogle Scholar
  28. Ave, M. et al. 2011. The TRACER instrument : A balloon-borne cosmic-ray detector. Nucl. Instrum. Methods Phys. Res. A 654 : 140–156 ADSCrossRefGoogle Scholar
  29. Axford, W.I., E. Leer and G. Skadron. 1977. Proc. 15th Int. Cosm. Ray Conf., Plovdiv, Vol. 11, p. 132 Google Scholar
  30. Baade, W. and F. Zwicky. 1934a. Supernovae and cosmic rays. Phys. Rev. 45 : 138 Google Scholar
  31. Baade, W. and F. Zwicky. 1934b. Remarks on super-novae and cosmic rays. Phys. Rev. 46 : 76–77 ADSCrossRefGoogle Scholar
  32. Barwick, S.W. et al. 1997a. Measurements of the cosmic-ray positron fraction from 1 to 50 GeV. Astrophys. J. 482 : L191–L194 ADSCrossRefGoogle Scholar
  33. Barwick, S.W. et al. 1997b. The high-energy antimatter telescope (HEAT) : an instrument for the study of cosmic-ray positrons. Nucl. Instrum. Methods Phys. Res. A 400 : 34–52 ADSCrossRefGoogle Scholar
  34. Beach, A.S. et al. 2001. Measurement of the cosmic-ray antiproton-to-proton abundance ratio between 4 and 50 GeV. Phys. Rev. Lett. 87 : 271101 ADSCrossRefGoogle Scholar
  35. Beatty, J.J. et al. 2004. New measurement of the cosmic-ray positron fraction from 5 to 15 GeV. Phys. Rev. Lett. 93 : 241102 ADSCrossRefGoogle Scholar
  36. Bell, A.R. 1978. Acceleration of cosmic-rays in shock fronts. MNRAS 182 : 147–156 ADSGoogle Scholar
  37. Binns, W.R. et al. 1981a. Cosmic-ray abundances of elements with atomic-number 26 ≤ Z ≤ 40 measured on HEAO-3. Astrophys. J. 247 : 115–118 ADSCrossRefGoogle Scholar
  38. Binns, W.R. et al. 1981b. The UH-nuclei cosmic-ray detector on the 3rd high-energy-astronomy-observatory. Nucl. Instrum. Methods 185 : 415–426 ADSCrossRefGoogle Scholar
  39. Binns, W.R. et al. 1989. AIP Conf. Proc. 183 : 147 ADSCrossRefGoogle Scholar
  40. Blandford, R.D. and J.P. Ostriker. 1978. Particle acceleration by astrophysical shocks. Astrophys. J. 221 : L29–L32 ADSCrossRefGoogle Scholar
  41. Boezio, M. et al. 1997. The cosmic-ray antiproton flux between 0.62 and 3.19 GeV measured near solar minimum activity. Astrophys. J. 487 : 415–423 ADSCrossRefGoogle Scholar
  42. Boezio, M. et al. 2000. The cosmic-ray electron and positron spectra measured at 1 AU during solar minimum activity. Astrophys. J. 532 : 653–669 ADSCrossRefGoogle Scholar
  43. Bogomolov, E.A. et al. 1979. Proc. 16th Int. Cosm. Ray Conf., Kyoto, Vol. 1, p. 330Google Scholar
  44. Bouffard, M. et al. 1982. The HEAO-3 cosmic-ray isotope spectrometer. Astrophys. Space Sci. 84 : 3–33 ADSCrossRefGoogle Scholar
  45. Bourquin, M. et al. 2005. The AMS tracking detector for cosmic-ray physics in space. Nucl. Instrum. Methods Phys. Res. A 541 : 110–116 CrossRefGoogle Scholar
  46. Bradt, H.L. and B. Peters. 1948. Investigation of the primary cosmic radiation with nuclear photographic emulsions. Phys. Rev. 74 : 1828–1837 ADSCrossRefGoogle Scholar
  47. Buckley, J. et al. 1994. A new measurement of the flux of the light cosmic-ray nuclei at high energies. Astrophys. J. 429 : 736–747 ADSCrossRefGoogle Scholar
  48. Buffington, A., S.M. Schindler and C.R. Pennypacker. 1981. A measurement of the cosmic-ray antiproton flux and a search for anti-helium. Astrophys. J. 248 : 1179–1193 ADSCrossRefGoogle Scholar
  49. Burnett, T.H. et al. 1986. JACEE emulsion chambers for studying the energy-spectra of high-energy cosmic-ray protons and helium. Nucl. Instrum. Methods Phys. Res. A 251 : 583–595 ADSCrossRefGoogle Scholar
  50. Chang, J. et al. 2008. An excess of cosmic ray electrons at energies of 300–800 GeV. Nature 456 : 362–365 ADSCrossRefGoogle Scholar
  51. Clay, J. and H.P. Berlage. 1932. Variation der Ultrastrahlung mit der geographischen Breite und dem Erdmagnetismus. Naturwiss. 20 : 687 ADSCrossRefGoogle Scholar
  52. Cohen, A.G., A. de Rujula and S.L. Glashow. 1998. A matter-antimatter universe? Astrophys. J. 495 : 539–549 ADSCrossRefGoogle Scholar
  53. Compton, A.H. 1932. Variations of cosmic rays with latitude. Phys. Rev. 41 : 111–113 ADSCrossRefGoogle Scholar
  54. Compton, A.H. 1933. A geographic study of cosmic rays. Phys. Rev. 43 : 387–403 ADSCrossRefGoogle Scholar
  55. Coutu, S. et al. 2011. Searching for TeV cosmic electrons with the CREST experiment. Nucl. Phys. B (Proc. Suppl.) 215 : 250–254 ADSCrossRefGoogle Scholar
  56. Cox, D.P. 2005. The three-phase interstellar medium revisited. Ann. Rev. Astron. Astrophys. 43 : 337–385 ADSCrossRefGoogle Scholar
  57. De Shong, J.A.,R.H. Hildebrand and P. Meyer. 1964. Ratio of electrons to positrons in primary cosmic radiation. Phys. Rev. Lett. 12 : 3–6 ADSCrossRefGoogle Scholar
  58. Diehl, E. et al. 2003. The energy spectrum of cosmic-ray protons and helium near 100 GeV. Astropart. Phys. 18 : 487–500 ADSCrossRefGoogle Scholar
  59. DuVernois, M.A. et al. 2001. Cosmic-ray electrons and positrons from 1 to 100 GeV : Measurements with HEAT and their interpretation. Astrophys. J. 559 : 296–303 ADSCrossRefGoogle Scholar
  60. Dwyer, R. and P. Meyer. 1981. Proc. 17th Int. Conf. Cosm. Rays, Paris, Vol. 2, p. 54Google Scholar
  61. Earl, J. 1961. Cloud-chamber observations of primary cosmic-ray electrons. Phys. Rev. Lett. 6 : 125–128 ADSCrossRefGoogle Scholar
  62. Ellsworth, R.W. et al. 1977. High-energy proton spectrum measurements. Astrophys. Space Sci. 52 : 415–427 ADSCrossRefGoogle Scholar
  63. Engelmann, J.J. et al. 1981. Proc. 17th Int. Cosm. Ray Conf., Paris, Vol. 9, p. 97Google Scholar
  64. Engelmann, J.J. et al. 1990. Charge composition and energy-spectra of cosmic-ray nuclei for elements from Be to Ni – results from HEAO-3-C2. Astron. Astrophys. 233 : 96–111 ADSGoogle Scholar
  65. Fanselow, J.L. et al. 1969. Charge composition and energy spectrum of primary cosmic-ray electrons. Astrophys. J. 158 : 771–780 ADSCrossRefGoogle Scholar
  66. Fermi, E. 1949. On the Origin of the Cosmic Radiation. Phys. Rev. 75 : 1169–1174 ADSzbMATHCrossRefGoogle Scholar
  67. Ficenec, D.J. et al. 1993. Proc. 23rd Int. Cosmic Ray Conf., Calgary, Vol. 1, p. 515Google Scholar
  68. Fleischer, R.L. et al. 1967a. Tracks of heavy primary cosmic rays in meteorites. JGR 72 : 355–366 ADSCrossRefGoogle Scholar
  69. Fleischer, R.L. et al. 1967b. Tracks of cosmic rays in plastics. Science 155 : 187–189 ADSCrossRefGoogle Scholar
  70. Fowler, P.H. et al. 1967 Proc. Roy. Soc. Lond. A 301 : 39 ADSCrossRefGoogle Scholar
  71. Fowler, P.H. et al. 1979. Proc. 16th Int. Cosm. Ray Conf., Kyoto, Vol. 12, p. 338Google Scholar
  72. Freier, P. et al. 1948a. Evidence for heavy nuclei in the primary cosmic radiation. Phys. Rev. 74 : 213–217 ADSCrossRefGoogle Scholar
  73. Freier, P. et al. 1948b. The heavy component of primary cosmic rays. Phys. Rev. 74 : 1818–1827 ADSCrossRefGoogle Scholar
  74. Gaisser, T.K. and R.K. Schaefer. 1997. Theoretical predictions for cosmic ray secondary antiprotons. Adv. Space Res. 19 : 775–780 ADSCrossRefGoogle Scholar
  75. Garcia-Munoz, M. and J.A. Simpson. 1979. Proc. 16th Int. Conf. Cosmic Rays, Kyoto, Vol. 1, p. 270 Google Scholar
  76. Garcia-Munoz, M.,G.M. Mason, and J.A. Simpson. 1973. Abundances of galactic cosmic-ray carbon, nitrogen, and oxygen and their astrophysical implications. Astrophys. J. 184 : 967–994 ADSCrossRefGoogle Scholar
  77. Garcia-Munoz, M., G.M. Mason and J.A. Simpson 1975a. Isotopic composition of galactic cosmic-ray lithium, beryllium, and boron. Astrophys. J. 201 : 145–148 ADSCrossRefGoogle Scholar
  78. Garcia-Munoz, M., G.M. Mason and J.A. Simpson. 1975b. Cosmic-ray age deduced from Be-10 abundance. Astrophys. J. 201 : 141–144 ADSCrossRefGoogle Scholar
  79. Ginzburg, V.L. and S. Syrovatskii. 1964. The Origin of Cosmic Rays. McMillan, New YorkGoogle Scholar
  80. Golden, R.L. et al. 1979. Evidence for the existence of cosmic-ray anti-protons. Phys. Rev. Lett. 43 : 1196–1199 ADSCrossRefGoogle Scholar
  81. Golden, R.L. et al. 1996. Measurement of the positron to electron ratio in the cosmic rays above 5 GeV. Astrophys. J. 457 : L103–L106 ADSCrossRefGoogle Scholar
  82. Grigorov, N.L. et al. 1966. Some problems and perspective in cosmic-ray studies. Space Sci. Rev. 5 : 167–209 ADSCrossRefGoogle Scholar
  83. Grigorov, N.L. et al. 1970. Measurement of effective cross sections of inelastic interaction of protons with carbon and hydrogen nuclei in energy region 20–600 GeV in satellites proton-1, proton-2, and proton-3. Sov. J. Nucl. Phys. 11, 455 : 588 Google Scholar
  84. Grigorov, N.L. et al. 1971a. Proc. 12th Int. Cosmic Ray Conf., Hobart, Vol. 5, p. 1746Google Scholar
  85. Grigorov, N.L. et al. 1971b. Proc. 12th Int. Cosmic Ray Conf., Hobart, Vol. 5, p. 1752Google Scholar
  86. Grigorov, N.L. et al. 1971c. Proc. 12th Int. Cosmic Ray Conf., Hobart, Vol. 5, p. 1760Google Scholar
  87. Grimani, C. et al. 2002. Measurements of the absolute energy spectra of cosmic-ray positrons and electrons above 7 GeV. Astron. Astrophys. 392 : 287–294 ADSCrossRefGoogle Scholar
  88. Guzik, T.G. et al. 2004. The ATIC Long Duration Balloon project. Adv. Space Res. 33 : 1763–1770 ADSCrossRefGoogle Scholar
  89. Haino, S. et al. 2004. Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer. Phys. Lett. B 594 : 35–46 ADSCrossRefGoogle Scholar
  90. Hams, T. et al. 2004. Measurement of the abundance of radioactive Be-10 and other light isotopes in cosmic radiation up to 2 GeV per nucleon with the balloon-borne instrument ISOMAX. Astrophys. J. 611 : 892–905 ADSCrossRefGoogle Scholar
  91. Hartmann, G., D. Müller and T. Prince. 1977. High-energy cosmic-ray electrons – a new measurement using transition-radiation detectors. Phys. Rev. Lett. 38 : 1368–1372 ADSCrossRefGoogle Scholar
  92. Hess, V.F. 1912. Ueber Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Physik. Z. 13 : 1084–1091 Google Scholar
  93. Higdon, J.C. and R.E. Lingenfelter. 2003. The superbubble origin of 22Ne in cosmic rays. Astrophys. J. 590 : 822–832 ADSCrossRefGoogle Scholar
  94. Hilberry, N. 1941. Extensive cosmic-ray showers and the energy distribution of primary cosmic rays. Phys. Rev. 60 : 1–9 ADSCrossRefGoogle Scholar
  95. Hulsizer, R.I. and B. Rossi. 1948. Search for electrons in the primary cosmic radiation. Phys. Rev. 73 : 1402–1403 ADSCrossRefGoogle Scholar
  96. Israel, M.H. et al. 2005. Isotopic composition of cosmic rays : Results from the cosmic ray isotope spectrometer on the ACE spacecraft. Nucl. Phys. A 758 : 201c–208c. ADSCrossRefGoogle Scholar
  97. Ivanenko, I.P. et al. 1988. Energy-spectrum and charge composition of primary cosmic-rays with energy above 2 TeV. JETP Lett. 48 : 510–513 ADSGoogle Scholar
  98. Johnson, T.H. and J.C. Street. 1933. The variation of cosmic-ray intensities with azimuth on Mt. Washington, N.H. Phys. Rev. 43 : 381 Google Scholar
  99. Juliusson, E., P. Meyer and D. Müller. 1972. Composition of cosmic-ray nuclei at high-energies. Phys. Rev. Lett. 29 : 445–448 ADSCrossRefGoogle Scholar
  100. Kobayashi, T. et al. 1999. Proc. 26th Int. Cosmic Ray Conference, Salt Lake City, Vol. 3, p. 61 Google Scholar
  101. L’Heureux, J. et al. 1990. A detector for cosmic-ray nuclei at very high-energies. NIM A 295 : 246–260 ADSCrossRefGoogle Scholar
  102. Lagage, P.O. and C.J. Cesarsky. 1983. The maximum energy of cosmic-rays accelerated by super-nova shocks. Astron. Astrophys. 125 : 249–257 ADSzbMATHGoogle Scholar
  103. Lezniak, J.A. and W.R. Webber. 1978. Charge composition and energy-spectra of cosmic-ray nuclei from 3000 MeV per nucleon to 50 GeV per nucleon. Astrophys. J. 223 : 676–696 ADSCrossRefGoogle Scholar
  104. Link, J.T. et al. 2001. Proc. 27th Int. Cosm. Ray Conf., Hamburg, Vol. 6, p. 2143Google Scholar
  105. Link, J.T. et al. 2003. Proc. 28th ICRC, Tsukuba, Vol. 4, p. 1781Google Scholar
  106. Linsley, J. 1983. Proc. 18th Int. Cosmic Ray Conf., Bangalore, Vol. 12, p. 135Google Scholar
  107. Lodders, K. 2003. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591 : 1220–1247 ADSCrossRefGoogle Scholar
  108. Lukasiak, A. et al. 1994a. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic-ray’s age. Astrophys. J. 423 : 426–431 ADSCrossRefGoogle Scholar
  109. Lukasiak, A. et al. 1994b. Cosmic-ray isotopic composition of C, N, O, Ne, Mg, Si nuclei in the energy-range 50–200 MeV per nucleon measured by the voyager spacecraft during the solar minimum period. Astrophys. J. 426 : 366 ADSCrossRefGoogle Scholar
  110. Lukasiak, A., F. B. McDonald and W. R. Webber 1994c. Voyager measurements of the isotopic composition of cosmic-ray aluminum and implications for the propagation of cosmic-rays. Astrophys. J. 430 : L69–L72 ADSCrossRefGoogle Scholar
  111. Lukasiak, A. et al. 1997. Voyager measurements of the isotopic composition of Fe, Co and Ni nuclei – Implications for the nucleosynthesis and the acceleration of cosmic rays. Adv. Space Res. 19 : 747–750 ADSCrossRefGoogle Scholar
  112. Mayorov, A.G. et al. 2011. The search for antihelium in cosmic rays using data from the PAMELA experiment. Bull. Russ. Acad. Sci. Phys. 75 : 331–333 CrossRefGoogle Scholar
  113. Meyer, J.P. 1985. Solar-stellar Outer atmospheres and energetic particles, and galactic cosmic rays. Astrophys. J. Suppl. 57 : 173 ADSCrossRefGoogle Scholar
  114. Meyer, P. and R. Vogt. 1961. Electrons in primary cosmic radiation. Phys. Rev. Lett. 6 : 193–196 ADSCrossRefGoogle Scholar
  115. Meyer, J.P., L. O’C. Drury and D.C. Ellison. 1997. Galactic cosmic rays from supernova remnants. A cosmic-ray composition controlled by volatility and mass-to-charge ratio. Astrophys. J. 487 : 182–196 ADSCrossRefGoogle Scholar
  116. Mitchell, J.W. et al. 1993. Proc. 23rd In. Cosmic Ray Conf., Calgary, Vol. 1, p. 519Google Scholar
  117. Mitchell, J.W. et al. 1996. Measurement of 0.25–3.2 GeV antiprotons in the cosmic radiation. Phys. Rev. Lett. 76 : 3057–3060 ADSCrossRefGoogle Scholar
  118. Moiseev, A. et al. 1997. Cosmic-ray antiproton flux in the energy range form 200 to 600 MeV. Astrophys. J. 474 : 479–489 ADSCrossRefGoogle Scholar
  119. Müller, D. and K. Tang. 1987. Cosmic-ray positrons from 10 to 20 GeV – a balloon-borne measurement using the geomagnetic east-west asymmetry. Astrophys. J. 312 : 183–194 ADSCrossRefGoogle Scholar
  120. Müller, D. et al. 1991. Energy-spectra and composition of primary cosmic-rays. Astrophys. J. 374 : 356–365 CrossRefGoogle Scholar
  121. Müller, D. 2004. Transition radiation detectors in particle astrophysics. Nucl. Instrum. Meth. Phys. Res. A 522 : 9–15 ADSCrossRefGoogle Scholar
  122. Nishimura, J. et al. 1980. Emulsion chamber observations of primary cosmic-ray electrons in the energy-range 30–1000 GeV. Astrophys. J. 238 : 394–409 ADSCrossRefGoogle Scholar
  123. de Nolfo, G.A. et al. 2009. Proc. 14th ICRC, Lodz, unpublishedGoogle Scholar
  124. Obermeier, A. et al. 2011. Energy spectra of primary and secondary cosmic-ray nuclei measured with tracer. Astrophys. J. 742 : 14 ADSCrossRefGoogle Scholar
  125. Obermeier, A. et al. 2012. The boron to carbon abundance ratio and galactic propagation of cosmic radiation. Astrophys. J. 752 : 69–75 ADSCrossRefGoogle Scholar
  126. Panasyuk, M.I. 2011. Cosmic ray physics in space : the role of Sergey Vernov’s scientific school. Astrophys. Space Sci. Trans. 7 : 151–156 ADSCrossRefGoogle Scholar
  127. Panov, A.D. et al. 2007. Proc. 30th ICRC, Merida, Vol. 2, p. 3Google Scholar
  128. Pfotzer, G. 1936. Dreifachkoinzidenzen der Ultrastrahlung aus vertikaler Richtung in der Stratosphaere. Z. Phys. 102 : 23–58 ADSCrossRefGoogle Scholar
  129. Pomerantz, M.A. and F.L. Hereford. 1949. The detection of heavy particles in the primary cosmic radiation. Phys. Rev. 76 : 997–998 ADSCrossRefGoogle Scholar
  130. Powell, J.C., P.H. Fowler, and D.H. Perkins. 1959. The Study of Elementary Particles by the Photographic Method. Pergamon PressGoogle Scholar
  131. Price, P.B. et al. 1968. High-resolution study of low-energy heavy cosmic rays with lexan track detectors. Phys. Rev. Lett. 21 : 630–633 ADSCrossRefGoogle Scholar
  132. Prince, T.A. 1979. Energy-spectrum of cosmic-ray electrons between 9 and 300 GeV. Astrophys. J. 227 : 676–693 ADSCrossRefGoogle Scholar
  133. Richtmyer, R.D. and E. Teller. 1949. On the origin of cosmic rays. Phys. Rev. 75 : 1729–1731 ADSCrossRefGoogle Scholar
  134. Rossi, B. 1964. Cosmic Rays. McGraw HillGoogle Scholar
  135. Ryan, M.J. et al. 1972. Cosmic-ray proton and helium spectra above 50 GeV. Phys. Rev. Lett. 28 : 985–988 ADSCrossRefGoogle Scholar
  136. Sasaki, M. et al. 2008. Search for antihelium : Progress with BESS. Adv. Space Res. 42 : 450–454 ADSCrossRefGoogle Scholar
  137. Schein, M., W.P. Jesse and E.O. Wollan. 1941. The nature of the primary cosmic radiation and the origin of the mesotron. Phys. Rev. 59 : 615–615 ADSCrossRefGoogle Scholar
  138. Seo, E.S. et al. 1991. Measurement of cosmic-ray proton and helium spectra during the 1987 solar minimum. Astrophys. J. 378 : 763–772 ADSCrossRefGoogle Scholar
  139. Silverberg, R.F., J.F. Ormes and V.K. Balasubrahmanian. 1973. Primary cosmic-ray electrons above 10 GeV – measurements using a thick detector. J. Geophys. Res. 78 : 7165–1773 ADSCrossRefGoogle Scholar
  140. Silverberg, R.F. 1976. Measurement of primary cosmic electron spectrum from 10 to about 250 GeV. J. Geophys. Res. 81 : 3944–3952 ADSCrossRefGoogle Scholar
  141. Simpson, J.A. 1983. Elemental and Isotopic Composition of the Galactic Cosmic Rays. Ann. Rev. Nucl. Part. Sci. 33 : 323–382 ADSCrossRefGoogle Scholar
  142. Simpson, J.A. et al. 1992. The Ulysses cosmic ray and solar particle investigation. Astron. Astrophys. Suppl. Ser. 92 : 365–399 ADSGoogle Scholar
  143. Smith, L.H. et al. 1972. Superconducting magnetic spectrometer for cosmic-ray nuclei. Rev. Sci. Instrum. 43 : 1–12 ADSCrossRefGoogle Scholar
  144. Smith, L.H. et al. 1973. Measurement of cosmic-ray rigidity spectra above 5 GV/c of elements from hydrogen to iron. Astrophys. J. 180 : 987–1010 ADSCrossRefGoogle Scholar
  145. Stone, E.C. et al. 1977. Cosmic-ray investigation for Voyager missions; energetic particle studies in the outer heliosphere and beyond. Space Sci. Rev. 21 : 355–376 ADSGoogle Scholar
  146. Stone, E.C. et al. 1998a. The cosmic-ray isotope spectrometer for the advanced composition explorer. Space Sci. Rev. 86 : 285–356 ADSCrossRefGoogle Scholar
  147. Stone, E.C. et al. 1998b. The solar isotope spectrometer for the advanced composition explorer. Space Sci. Rev. 86 : 357–408 ADSCrossRefGoogle Scholar
  148. Strong, A.W. and I.V. Moskalenko. 1998. Propagation of cosmic-ray nucleons in the galaxy. Astrophys. J. 509 : 212–228 ADSCrossRefGoogle Scholar
  149. Strong, A.W. et al. 2007. Cosmic-ray propagation and interactions in the galaxy. Ann. Rev. Nucl. Part. Sci. 57 : 285–327 ADSCrossRefGoogle Scholar
  150. Swordy, S.P. et al. 1990. Relative abundances of secondary and primary cosmic-rays at high-energies. Astrophys. J. 349 : 625–633 ADSCrossRefGoogle Scholar
  151. Tang, K.K. 1984. The energy-spectrum of electrons and cosmic-ray confinement – a new measurement and its interpretation. Astrophys. J. 278 : 881–892 ADSCrossRefGoogle Scholar
  152. Torii, S. et al. 2004. The CALET, CALorimetric Electron Telescope, on ISS/JEM Nucl. Phys. B (Proc. Suppl.) 134 : 23–30 ADSCrossRefGoogle Scholar
  153. Torii, S. et al. 2001. The energy spectrum of cosmic-ray electrons from 10 to 100 GeV observed with a highly granulated imaging calorimeter. Astrophys. J. 559 : 973–984 ADSCrossRefGoogle Scholar
  154. Turner, M.S. and F. Wilczek. 1990. Positron line radiation as a signature of particle dark matter in the halo. Phys. Rev. D 42 : 1001–1007 ADSCrossRefGoogle Scholar
  155. van Allen, J. and H.E. Tatel. 1948. The cosmic-ray counting rate of a single Geiger counter from ground level to 161 kilometers altitude. Phys. Rev. 73 : 245–251 ADSCrossRefGoogle Scholar
  156. Vernoff, S.N. 1934. On the study of cosmic rays at the great altitudes. Phys. Rev. 46 : 822–822 ADSCrossRefGoogle Scholar
  157. Weaver, B.A. and A.J. Westphal. 2002. Extended analysis of the trek ultraheavy collector Astrophys. J. 569 : 493–500 ADSCrossRefGoogle Scholar
  158. Webber, W.R. 1982. Charge abundances of cosmic-rays at their source. Astrophys. J. 255 : 329–340 ADSCrossRefGoogle Scholar
  159. Webber, W.R. 1997. New experimental data and what it tells us about the sources and acceleration of cosmic rays. Space Sci. Rev. 81 : 107–142 ADSCrossRefGoogle Scholar
  160. Wiedenbeck, M.E. and D.E. Greiner. 1980. A cosmic-ray age based on the abundance of Be-10. Astrophys. J. 239 : L139–L142 ADSCrossRefGoogle Scholar
  161. Wiedenbeck, M.E. et al. 1999. Constraints on the time delay between nucleosynthesis and cosmic-ray acceleration from observations of Ni-59 and Co-59. Astrophys. J. 523 : 61–64 ADSCrossRefGoogle Scholar
  162. Wiedenbeck, M.E. et al. 2007. An overview of the origin of galactic cosmic rays as inferred from observations of heavy ion composition and spectra. Space Sci. Rev. 130 : 415–429 ADSCrossRefGoogle Scholar
  163. Wu, J. on behalf of the PAMELA collaboration. 2011. Measurements of cosmic-ray antiprotons with PAMELA. Astrophys. Space Sci. Trans. 7 : 225–228 ADSCrossRefGoogle Scholar
  164. Yanasak, N.E. et al. 2001. Measurement of the secondary radionuclides Be-10, Al-26, Cl-36, Mn-54, and C-14 and implications for the galactic cosmic-ray age. Astrophys. J. 563 : 768–792 ADSCrossRefGoogle Scholar
  165. Yoon, Y.S. et al. 2011. Cosmic-ray proton and helium spectra from the first CREAM flight. Astrophys. J. 728 : 122 ADSCrossRefGoogle Scholar
  166. Yoshimura, K. et al. 1995. Observation of cosmic-ray antiprotons at energies below 500 MeV. Phys. Rev. Lett. 75 : 3792–3795 ADSCrossRefGoogle Scholar
  167. Young, J.S. et al. 1981. The elemental and isotopic composition of cosmic-rays – silicon to nickel. Astrophys. J. 246 : 1014–1030 ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Enrico Fermi InstituteThe University of ChicagoChicagoUSA

Personalised recommendations