Advertisement

The European Physical Journal H

, Volume 37, Issue 3, pp 459–513 | Cite as

Very-high energy gamma-ray astronomy

A 23-year success story in high-energy astroparticle physics
  • E. Lorenz
  • R. WagnerEmail author
Article
Part of the following topical collections:
  1. Topical issue: Cosmic rays, gamma rays, and neutrinos: a survey of 100 years of research

Abstract

Very-high energy (VHE) gamma quanta contribute only a minuscule fraction – below one per million – to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best “messengers” of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.

Keywords

Crab Nebula Cherenkov Light Hadronic Shower Cherenkov Telescope Magic Collaboration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdo, A.A. et al. (Milagro collaboration). 2007. TeV Gamma-Ray Sources from a Survey of the Galactic Plane with Milagro. Astrophys. J. Lett. 664 : L91–L94 ADSCrossRefGoogle Scholar
  2. Abdo, A.A. et al. 2011. Fermi-LAT Observations of Markarian 421 : the Missing Piece of its Spectral Energy Distribution. Astrophys. J. 736 : 131–152 ADSCrossRefGoogle Scholar
  3. Abramowski, A. et al. (H.E.S.S. collaboration) 2010. VHE gamma-ray emission of PKS 2155-304 : spectral and temporal variability. Astron. Astrophys. 520 : A83 CrossRefGoogle Scholar
  4. Abramowski, A. et al. (H.E.S.S. collaboration). 2011a. Revisiting the Westerlund 2 field with the H.E.S.S. Telescope Array. Astron. Astrophys. 525 : A46 ADSCrossRefGoogle Scholar
  5. Abramowski, A. et al. (H.E.S.S. collaboration). 2011b. Search for Lorentz Invariance breaking with a likelihood fit of the PKS 2155-304 Flare Data Taken on MJD 53944. Astropart. Phys. 34 : 738–747 ADSCrossRefGoogle Scholar
  6. Abramowski, A. et al. (H.E.S.S. collaboration). 2011c. Search for a Dark Matter annihilation signal from the Galactic Center halo with H.E.S.S. Phys. Rev. Lett. 106 : 161301 ADSCrossRefGoogle Scholar
  7. Abramowski, A. et al. (H.E.S.S., MAGIC, VERITAS collaboration). 2012. The 2010 very high energy gamma-ray flare & 10 years of multi-wavelength observations of M 87. Astrophys. J. 746 : 151–169 ADSCrossRefGoogle Scholar
  8. Acciari, V.A. et al. (VERITAS, MAGIC, H.E.S.S. collaboration). 2009a. Radio Imaging of the Very-High-Energy Gamma-Ray Emission Region in the Central Engine of a Radio Galaxy. Science 325 : 444–448 ADSCrossRefGoogle Scholar
  9. Acciari, V.A. et al. (VERITAS collaboration). 2009b. A connection between star formation activity and cosmic rays in the starburst galaxy M82. Nature 462 : 770–772 ADSCrossRefGoogle Scholar
  10. Acciari, V.A. et al. (VERITAS collaboration). 2011. Discovery of TeV Gamma Ray Emission from Tycho’s Supernova Remnant. Astrophys. J. Lett. 730 : L20 ADSCrossRefGoogle Scholar
  11. Acero, F. et al. (H.E.S.S. collaboration). 2009. Detection of Gamma Rays from a Starburst Galaxy. Science 326 : 1080–1082 ADSCrossRefGoogle Scholar
  12. Acero, F. et al. (H.E.S.S. collaboration). 2010. First detection of VHE γ-rays from SN 1006 by HESS. Astron. Astrophys. 516 : A62 ADSCrossRefGoogle Scholar
  13. Acero, F. et al. (H.E.S.S. collaboration). 2012. A multiwavelength view of the flaring state of PKS 2155-304 in 2006. Astron. Astrophys. 539 : A149 CrossRefGoogle Scholar
  14. Actis, M. et al. (CTA consortium). 2011. Design concepts for the Cherenkov Telescope Array CTA : an advanced facility for ground-based high-energy gamma-ray astronomy. Exp. Astron. 32 : 193–316 ADSCrossRefGoogle Scholar
  15. Aharonian, F. et al. 1989. Cerenkov Imaging TeV Gamma-ray Telescope, in : Very High Energy Gamma Ray Astronomy, Proceedings of the International Workshop, Crimea, USSR, p. 36Google Scholar
  16. Aharonian, F.A., A.G. Akhperjanian, A.S. Kankanian, R.G. Mirzoyan, A.A. Stepanian, N. Müller, M. Samorski, W. Stamm, M. Bott-Bodenhausen, E. Lorenz and P. Sawallisch. 1991. A System of Air Cherenkov Telescopes in the HEGRA Array, in : Proceedings of the 22nd International Cosmic Ray Conference, Dublin, Ireland, Vol. 2, pp. 615–618Google Scholar
  17. Aharonian, F. et al. (HEGRA collaboration). 1999. The temporal characteristics of the TeV gamma-radiation from MKN 501 in 1997. I. Data from the stereoscopic imaging atmospheric Cherenkov telescope system of HEGRA. Astron. Astrophys. 342 : 69–86 ADSGoogle Scholar
  18. Aharonian, F. et al. (H.E.S.S. collaboration). 2004. Very high energy gamma rays from the direction of Sagittarius A*. Astron. Astrophys. 425 : L13–L17 ADSCrossRefGoogle Scholar
  19. Aharonian, F. et al. (H.E.S.S. collaboration). 2005a. Discovery of the binary pulsar PSR B1259-63 in very-high-energy gamma rays around periastron with HESS. Astron. Astrophys. 442 : 1–10 ADSCrossRefGoogle Scholar
  20. Aharonian, F. et al. (H.E.S.S. collaboration). 2005b. Discovery of Very High Energy Gamma Rays Associated with an X-ray Binary. Science 309 : 746–749 ADSCrossRefGoogle Scholar
  21. Aharonian, F. et al. (H.E.S.S. collaboration). 2006a. The H.E.S.S. survey of the Inner Galaxy in very high-energy gamma-rays. Astrophys. J. 636 : 777–797 ADSCrossRefGoogle Scholar
  22. Aharonian, F. et al. (H.E.S.S. collaboration). 2006b. 3.9 day orbital modulation in the TeV gamma-ray flux and spectrum from the X-ray binary LS 5039. Astron. Astrophys. 460 : 743–749 ADSCrossRefGoogle Scholar
  23. Aharonian, F. et al. (H.E.S.S. collaboration). 2007. Detection of extended very-high-energy gamma-ray emission towards the young stellar cluster Westerlund 2. Astron. Astrophys. 467 : 1075–1080 ADSCrossRefGoogle Scholar
  24. Aharonian, F. et al. (H.E.S.S. collaboration), 2008. HESS very-high-energy gamma-ray sources without identified counterparts. Astron. Astrophys. 477 : 353–363 ADSCrossRefGoogle Scholar
  25. Aharonian, F. et al. (H.E.S.S collaboration). 2009a. H.E.S.S. observations of the prompt and afterglow phases of GRB 060602B. Astrophys. J. 690 : 1068–1073 ADSCrossRefGoogle Scholar
  26. Aharonian, F. et al. (H.E.S.S. collaboration). 2009b. Discovery of Gamma-Ray Emission from the Shell-Type Supernova Remnant RCW 86 with HESS. Astrophys. J. 692 : 1500–1505 ADSCrossRefGoogle Scholar
  27. Aharonian, F. et al. (H.E.S.S. collaboration). 2009c. Simultaneous observations of PKS 2155-304 with H.E.S.S., Fermi, RXTE and ATOM : spectral energy distributions and variability in a low state. Astrophys. J. 696 : L150 ADSCrossRefGoogle Scholar
  28. Aharonian, F. et al. (H.E.S.S. collaboration). 2009d. Very high energy gamma-ray observations of the binary PSR B1259-63/SS2883 around the 2007 Periastron H.E.S.S. collaboration. Astron. Astrophys. 507 : 389–396 ADSCrossRefGoogle Scholar
  29. Aiso, S. et al. 1997. The Detection of TeV Gamma Rays from Crab using the Telescope Array Prototype, in : Proceedings of the 25th International Cosmic Ray Conference, Durban, South Africa, Vol. 3, pp. 177–180Google Scholar
  30. Akerlof, C.W. et al. 1991. Granite, a new very high energy gamma-ray telescope. Nucl. Phys. B – Proc. Suppl. 14 : 237–243 ADSCrossRefGoogle Scholar
  31. Albert, J. et al. (MAGIC collaboration). 2006. Variable Very-High-Energy Gamma-Ray Emission from the Microquasar LS I +61 303. Science 23 : 1771–1773 ADSCrossRefGoogle Scholar
  32. Albert, J. et al. (MAGIC collaboration). 2007. Discovery of VHE Gamma Radiation from IC443 with the MAGIC Telescope. Astrophys. J. Lett. 664 : L87–L90 ADSCrossRefGoogle Scholar
  33. Albert, J. et al. (MAGIC collaboration). 2008a. Very high energy gamma rays from a distant Quasar : How transparent is the Universe? Science 320 : 1752–1754 ADSCrossRefGoogle Scholar
  34. Albert, J. et al. (MAGIC collaboration). 2008b. Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope. Phys. Lett. B 668 : 253–257 ADSCrossRefGoogle Scholar
  35. Albert, J. et al. (MAGIC collaboration). 2009. Periodic Very High Energy γ-Ray Emission From LS I+61° 303 Observed With The MAGIC Telescope. Astrophys. J. 693 : 303–310 ADSCrossRefGoogle Scholar
  36. Aleksić, J. et al. (MAGIC collaboration). 2011. MAGIC discovery of VHE Emission from the FSRQ PKS 1222+21. Astrophys. J. 730 : L8 ADSCrossRefGoogle Scholar
  37. Aleksić, J. et al. (MAGIC collaboration). 2012a. Detection of very-high energy γ-ray emission from NGC 1275 by the MAGIC telescopes. Astron. Astrophys. 539 : L2 ADSCrossRefGoogle Scholar
  38. Aleksić, J. et al. (MAGIC collaboration). 2012b. Phase-resolved energy spectra of the Crab pulsar in the range of 50-400 GeV measured with the MAGIC telescopes. Astron. Astrophys. 540 : A69 CrossRefGoogle Scholar
  39. Aliu, E. et al. (MAGIC collaboration). 2008. Observation of Pulsed γ-Rays Above 25 GeV From the Crab Pulsar with MAGIC. Science 322 : 1221–1224 ADSCrossRefGoogle Scholar
  40. Aliu, E. et al. (VERITAS collaboration). 2011. Detection of Pulsed Gamma Rays Above 100 GeV from the Crab Pulsar. Science 334 : 69–72 ADSCrossRefGoogle Scholar
  41. Aliu, E. et al. (VERITAS collaboration). 2012. VERITAS Deep Observations of the Dwarf Spheroidal Galaxy Segue 1. Phys. Rev. D 85 : 062001 ADSCrossRefGoogle Scholar
  42. Anderhub, H. et al. (FACT collaboration). 2011. A G-APD based Camera for Imaging Atmospheric Cherenkov Telescopes. Nucl. Instrum. Methods Phys. Res. A : Accel. Spectrom. Detect. Assoc. Equip. 628 : 107–110 ADSCrossRefGoogle Scholar
  43. Auger, P., P. Ehrenfest, R. Maze, J. Daudin and R.A. Fréon, 1939. Extensive Cosmic-Ray Showers. Rev. Mod. Phys. 11 : 288–291 ADSCrossRefGoogle Scholar
  44. Augustin, J.-E. et al. 1974. Discovery of a Narrow Resonance in e+e− Annihilation. Phys. Rev. Lett. 33 : 1406–1408 ADSCrossRefGoogle Scholar
  45. Bagge, E.R., M. Samorski and W. Stamm. 1977. A new Air Shower Experiment at Kiel, in : Proceedings of the 15th International Cosmic Ray Conference, Plovdiv, Bulgaria, Vol. 12, pp. 24–29Google Scholar
  46. Baillon, P. et al. 1992. Detection of very high energy gamma rays from the Crab source, in : Proceedings of the XXVI International Conference on High Energy Physics. Vol. II. AIP Conference Proceedings, Vol. 272, pp. 1218–1221Google Scholar
  47. Baixeras, C. et al. (MAGIC collaboration). 2003. The MAGIC Telescope. Nucl. Phys. B (Proc. Suppl.) 114 : 247–252 ADSCrossRefGoogle Scholar
  48. Barrau, A. et al. (CAT collaboration). 1998. The CAT imaging telescope for very-high-energy gamma-ray astronomy. Nucl. Instrum. Methods Phys. Res. Sect. A : Accel. Spectrom. Detect. Assoc. Equip. 416 : 278–292 ADSCrossRefGoogle Scholar
  49. Bastieri, D. et al. (CLUE collaboration).1999. The CLUE experiment running with 8 telescopes; observations of gamma sources and runs on Moon, in : AIP Conference Proceedings, Vol. 515, pp. 436–440 Google Scholar
  50. Blackett, P.M.S. 1948. A possible contribution to the night sky from the Cerenkov radiation emitted by cosmic rays. in : The Emission Spectra of the Night Sky and Aurorae, Papers read at an International Conference held in London. London : The Physical Society, p. 34 Google Scholar
  51. Borione, A. et al. 1997. High statistics search for ultrahigh energy γ-ray emission from Cygnus X-3 and Hercules X-1. Phys. Rev. D 55 : 1714–1731 ADSCrossRefGoogle Scholar
  52. Bowden, C.C.G. et al. 1991. The University of Durham Mark V Composite Gamma Ray Telescope, in : Proceedings of the 22nd International Cosmic Ray Conference, Dublin, Ireland, Vol. 2, pp. 626–629 Google Scholar
  53. Bradbury, Stella et al. (HEGRA collaboration). 1997. Detection of gamma-rays above 1.5 TeV from Mkn 501. Astron. Astrophys. Lett. 320 : 5–8 ADSGoogle Scholar
  54. Budnev, N.M. et al. 2005. The Tunka Experiment : Towards a 1-km2 Cherenkov EAS Array in the Tunka Valley, in : Proceedings of the 29th International Cosmic Ray Conference, Pune, India, Vol. 8, pp. 255–259Google Scholar
  55. Cao, Zhen et al., (LHAASO collaboration). 2011. The ARGO-YBJ Experiment Progresses and Future Extension. Int. J. Mod. Phys. D 20 : 1713–1721 ADSCrossRefGoogle Scholar
  56. Cassidi, M. et al. 1997. CASA-BLANCA : A Large Non-imaging Cherenkov Detector at CASA-MIA, in : Proceedings of the 25th International Cosmic Ray Conference, Durban, South Africa, Vol. 5, pp. 189–192 Google Scholar
  57. Catanese, M. and Weekes, C. Trevor. 1999. Very High Energy Gamma-Ray Astronomy. Publ. Astron. Soc. Pac. 111 : 1193–1332 ADSCrossRefGoogle Scholar
  58. Cherenkov, Pavel A. 1934. Visible emission of clean liquids by action of γ radiation. Doklady Akademii Nauk SSSR 2 : 451 Google Scholar
  59. Chi X., J. Wdowczyk and A.W. Wolfendale. 1992. The clustering of the arrival directions of the highest-energy cosmic rays. J. Phys. G : Nucl. Part. Phys. 18 : 1867–1868; further references therein ADSCrossRefGoogle Scholar
  60. Chudakov, A.E. and G. Zatsepin. 1961. On the methods of searching for local sources of high-energy photons. J. Exp. Theor. Phys. 41 : 655 Google Scholar
  61. Chudakov, A.E., V.L. Dadykin, V.I. Zatsepin and N.M. Nesterova. 1963. On the high energy photons from local sources, in : Proceedings of the 8th International Cosmic Ray Conference, Jaipur, India, Vol. 4, pp. 199–203Google Scholar
  62. Chudakov, A.E. et al. 1965. A serach for photons with energy 1013 eV from local sources of cosmic radiation, Proceedings of Lebedev Institute, Vol. 26, pp. 118–141, English Translation : Consultants Bureau, p. 99Google Scholar
  63. Cocconi, G. 1959. An air shower telescope and the detection of 1012 eV photon sources, in : Proceedings of the 2nd International Cosmic Ray Conference, Moscow, Russia, Vol. 2, pp. 309–312 Google Scholar
  64. Enomoto, R. et al. 2006. A Search for Sub-TeV Gamma Rays from the Vela Pulsar Region with CANGAROO-III. Astrophys. J. 638 : 397–408 ADSCrossRefGoogle Scholar
  65. Fazio G.G., H.F. Helmken, G.H. Rieke and T.C. Weekes. 1968. An experiment to search for discrete sources of cosmic gamma rays in the 1011 to 1012 eV region. Can J. Phys. 46 : S451–S456 ADSCrossRefGoogle Scholar
  66. Fleury, Patrick and Giuseppe Vacanty (Eds.) 1992. Conference Proceedings : Towards a Major Atmospheric Cherenkov Detector for TeV Astroparticle Physics, editions Frontières, ISB N 2-86332-126-9 Google Scholar
  67. Fomin, V.P. et al. 1991. Comparison of the Imaging Gamma-Ray Telescopes at the Crimea and Whipple Observatories, in : Proceedings of the 22nd International Cosmic Ray Conference, Dublin, Ireland, Vol. 2, pp. 603–606Google Scholar
  68. Gaidos, J.A. et al. (Whipple collaboration). 1996. Extremely rapid bursts of TeV photons from the active galaxy Markarian 421. Nature 383 : 319–320 ADSCrossRefGoogle Scholar
  69. Galbraith, W. and J.V. Jelley. 1953. Light Pulses from the Night Sky associated with Cosmic Rays. Nature 171 : 349–350 ADSCrossRefGoogle Scholar
  70. Gingrich D.M. et al. 2005. The STACEE ground-based gamma-ray detector. IEEE Trans. Nucl. Sci. 52 : 2977–2985 ADSCrossRefGoogle Scholar
  71. Goret, P. et al. 1991. ASGAT : A Fast Timing VHE Gamma-Ray Telescope, in : Proceedings of the 22nd International Cosmic Ray Conference, Dublin, Ireland, Vol. 2, pp. 630–633Google Scholar
  72. Gould, R.J. and G. Schréder. 1966. Opacity of the Universe to High-Energy Photons. Phys. Rev. Lett. 16 : 252–254 ADSCrossRefGoogle Scholar
  73. Grindlay, J.E.,H.F. Helmken,R.H. Brown,J. Davis andL.R. Allen. 1975. Results of a Southern-Hemisphere search for gamma-ray sources at energies of at least 300 GeV. Astrophys. J. 201 : 82–89 ADSCrossRefGoogle Scholar
  74. Harris Dan, E.,F. Massaro,C.C. Cheung,D. Horns,M. Raue,Ł. Stawarz,S. Wagner,P. Colin,D. Mazin,R. Wagner,M. Beilicke,S. LeBohec,M. Hui and R. Mukherjee. 2011. An Experiment to Locate the Site of TeV Flaring in M87. Astrophys. J. 743 : 177 ADSCrossRefGoogle Scholar
  75. Helfand, D.J. et al. 2007. Discovery of the Putative Pulsar and Wind Nebula Associated with the TeV Gamma-Ray Source HESS J1813-178. Astrophys. J. 665 : 1297–303 ADSCrossRefGoogle Scholar
  76. Hess, Victor Franz. 1912. Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Phys. Z. 13 : 1084–1091 Google Scholar
  77. Hillas, A. Michael. 1985. Cerenkov light images of EAS produced by primary gamma rays and by nuclei, in : Proceedings of the 18th International Cosmic Ray Conference, La Jolla, USA, Vol. 3, pp. 445–449Google Scholar
  78. Hofmann, Werner. 2001. Status of the H.E.S.S. project, in : Proceedings of the 27th International Cosmic Ray Conference, Hamburg, Germany, Vol. 7, pp. 2785–7288Google Scholar
  79. Holder, Jamie et al. (VERITAS collaboration). 2006. The First VERITAS Telescope. Astropart. Phys. 25 : 391–401 ADSCrossRefGoogle Scholar
  80. Huang, J. et al. (Tibet-AS collaboration). 2009. The complex EAS hybrid arrays in Tibet. Nucl. Phys. : Proc. Suppl. 196 : 147–152 ADSCrossRefGoogle Scholar
  81. Joshi, U. et al. (TACTIC collaboration). 2000. Coordinated TeV gamma-ray and optical polarization study of BL Lac object Mkn 501. Bulletin of the Astronomical Society of India 28 : 409–411 ADSGoogle Scholar
  82. Kampert, Karl-Heinz and Alan A. Watson 2012. Extensive air showers and ultra high-energy cosmic rays : a historical review. Eur. Phys. J. H 37 : 359–412 CrossRefGoogle Scholar
  83. Karle, Albrecht et al. (AIROBICC collaboration). 1995. Design and performance of the angle integrating Cerenkov array AIROBICC. Astropart. Phys. 3 : 321–347 ADSCrossRefGoogle Scholar
  84. Kifune, T. 1992. The Energy Threshold of Imaging Cerenkov Technique and 3.8m Telecope of CANGAROO, in : Conference Proceedings : Towards a Major Atmospheric Cherenkov Detector for TeV Astroparticle Physics (Ref. Fleury 1992), pp. 229–237Google Scholar
  85. Kolhörster, Werner. 1913. Messungen der durchdringenden Strahlung in Freiballons in größeren Höhen. Phys. Z. 14 : 1153–1156 Google Scholar
  86. Kosack, K. et al. 2004. TeV Gamma-Ray Observations of the Galactic Center. Astrophys. J. Lett. 608 : L97–L100 ADSCrossRefGoogle Scholar
  87. Koul, R. et al. 2005. The Himalayan Gamma Ray Observatory at Hanle, in : Proceedings of the 29th International Cosmic Ray Conference, Pune, India, Vol. 5, pp. 243–246Google Scholar
  88. Kranich, Daniel. 2002. Temporal and spectral characteristics of the active galactic nucleus Mkn 501 during a phase of high activity in the TeV range, Ph.D. thesis, Technische Universität MünchenGoogle Scholar
  89. Lloyd-Evans, J., R.N. Coy,A. Lambert,J. Lapikens,M. Patel,R.J.O. Reid and A.A. Watson. 1983. Observation of gamma rays with greater than 1000 TeV energy from Cygnus X-3. Nature 305 : 784–787 ADSCrossRefGoogle Scholar
  90. Lorenz, Eckart. 2006. High-energy astroparticle physics. Nucl. Instr. Methods Phys. Res. Sect. A : Accel. Spectrom. Detect. Assoc. Equip. 567 : 1–11 ADSCrossRefGoogle Scholar
  91. Lemoine-Gourmard, M., et al. (H.E.S.S. collaboration). 2007. HESS observations of the supernova remnant RX J0852.0-4622 : shell-type morphology and spectrum of a widely extended VHE gamma-ray source, in : Proceedings of the 30th International Cosmic Ray Conference, Merida, Mexico, Vol. 2, pp. 667–670Google Scholar
  92. Maier, Gernot, Skilton, Joanna, (VERITAS and H.E.S.S. collaborations). 2011. VHE Observations of the Binary Candidate HESS J0632+057 with H.E.S.S. and VERITAS, in : Proceedings of the 32th International Cosmic Ray Conference, Beijing, China, arXiv :1111.2155 [astro-ph]Google Scholar
  93. Marshak, M.L. et al. 1985. Evidence for muon production by particles from Cygnus X-3. Phys. Rev. Lett. 54 : 2079–2082 ADSCrossRefGoogle Scholar
  94. Merck, M. et al. (HEGRA collaboration). 1991. Search for Steady and Sporadic Emission of Neutral Radiation Above 50 TeV with the HEGRA Array, in : Proceedings of the 22nd International Cosmic Ray Conference, Dublin, Ireland, Vol. 1, pp. 261–264Google Scholar
  95. Merck, Martin. 1993. Suche nach Quellen untrahochenergetischer kosmischer Strahlung mit dem HEGRA-Detektor, Ph.D. thesis, Ludwig-Maximilians-Universität MünchenGoogle Scholar
  96. Millikan, R.A., G.H. Cameron, 1928. New results on cosmic rays. Nature 121 : 19–26 ADSCrossRefGoogle Scholar
  97. Mirabel, I.F. 2006. Very Energetic Gamma-Rays from Microquasars and Binary Pulsars. Science 312 : 1759–1760 ADSCrossRefGoogle Scholar
  98. Morrison, P. 1958. On gamma-ray astronomy. Il Nuovo Cimento 7 : 858–865 CrossRefGoogle Scholar
  99. Nikolsky, S.I. and V.G. Sinitsyna. 1989. Investigation of Gamma-sources by Mirror Telescopes, in : Very High Energy Gamma Ray Astronomy, Proceedings of the International Workshop, Crimea, USSR,p. 11 Google Scholar
  100. Nolan, P.L. et al. (Fermi-LAT collaboration). 2012, Fermi Large-Area Telescope Second Source Catalog. Astron. J. Suppl. Ser. 199 : 31–77 ADSCrossRefGoogle Scholar
  101. Paré, E. et al. 2002. CELESTE : an atmospheric Cherenkov telescope for high energy gamma astrophysics. Nucl. Instr. Methods Phys. Res. Sect. A : Accel. Spectrom. Detect. Assoc. Equip. 490 : 71–89 ADSCrossRefGoogle Scholar
  102. Parsignault, D.R., E. Schreier, J. Grindlay and H. Gursky. 1976. On the stability of the period of Cygnus X-3. Astrophys. J. Lett. 209 : L73–L75 ADSCrossRefGoogle Scholar
  103. Penzias, A. and R.W. Wilson. 1965. A Measurement Of Excess Antenna Temperature At 4080 Mc/s. Astrophys. J. Lett. 142 : 419–421 ADSCrossRefGoogle Scholar
  104. Pfeffermann, E. and R. Aschenbach. 1996. ROSAT observation of a new supernova remnant in the constellation Scorpius, in : Proceedings of International Conference on X-ray Astronomy and Astrophysics : Röntgenstrahlung from the Universe, pp. 267–268Google Scholar
  105. Plaga, Rainer. 2000, in : Proceedings of 17th European Cosmic Ray Symposium, Łódź, Poland Google Scholar
  106. Punch, M. et al. (Whipple collaboration). 1992. Detection of TeV photons from the active galaxy Markarian 421. Nature 358 : 477–478 ADSCrossRefGoogle Scholar
  107. Quinn, J. et al. (Whipple collaboration). 1996. Detection of Gamma Rays with E > 300 GeV from Markarian 501. Astrophys. J. Lett. 456 : L83–86 ADSCrossRefGoogle Scholar
  108. Quinn, J. et al. (Whipple collaboration). 1999. The Flux Variability of Markarian 501 in Very High Energy Gamma Rays. Astrophys. J. 518 : 693–698 ADSCrossRefGoogle Scholar
  109. Remillard, R.A., M.L. Levine. 1997. The RXTE All Sky Monitor : First Year of Performance, in : Proceedings All Sky X-ray Observations in the Next Decade, RIKEN, Japan, p. 29Google Scholar
  110. Salazar, H. 2009. The HAWC observatory and its synergies at Sierra Negra Volcano, in : Proceedings of the 31st International Cosmic Ray Conference, Łódź, Poland Google Scholar
  111. Samorski, M., W. Stamm. 1983. Detection of 2 × 1015 to 2 × 1016 eV gamma-rays from Cygnus X-3. Astrophys. J. Lett. 268 : L17–21 ADSCrossRefGoogle Scholar
  112. Sinnis, Gus. 2009. Cosmic-Ray Physics with the Milagro Gamma-Ray Observatory. J. Phys. Soc. Jpn Suppl. A 78 : 84–87 CrossRefGoogle Scholar
  113. Smith, D.A. et al. 2006. Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov telescope. Astron. Astrophys. 459 : 453–464 ADSCrossRefGoogle Scholar
  114. Spiering, C. 2012. Towards high-energy neutrino astronomy. A historical review. Eur. Phys. J. H 37 : 515–565 CrossRefGoogle Scholar
  115. Stepanian, A.A., Fomin, P. Valery and B.M. Vladimirsky. 1983. A method to distinguish the gamma-ray Cherenkov flashes from proton component of cosmic rays. Izv. Krimskoi Astrofiz. Obs. 66 : 234–240 ADSGoogle Scholar
  116. Tümer, T., D. Bhattacharya,U. Mohideen,R. Rieben,V. Souchkov,H. Tom andJ. Zweerink. 1999. Solar Two Gamma-Ray Observatory. Astropart. Phys. 11 : 271–273 ADSCrossRefGoogle Scholar
  117. Urban, M. et al. (ARTEMIS and Whipple collaborations). 1991. ARTEMIS : Anti-Matter Research Through the Earth Moon Ion Spectrometer, in : Proceedings of the 22nd International Cosmic Ray Conference, Dublin, Ireland, Vol. 2, pp. 189–192Google Scholar
  118. Urry, C. Megan and Paolo Padovani 1995. Unified Schemes for Radio-Loud Active Galactic Nuclei. Pub. Astron. Soc. Pac. 107 : 803–845 ADSCrossRefGoogle Scholar
  119. Vandenbroucke, Justin. 2010. AGIS : A Next-generation TeV Gamma-ray Observatory. BAAS 41 : 909 ADSGoogle Scholar
  120. Vassiliev, Vladimir V. 2000. Extragalactic background light absorption signal in the TeV gamma-ray spectra of blazars. Astropart. Phys. 12 : 217–238 ADSCrossRefGoogle Scholar
  121. Vladimirsky, B.M., Yu. L. Zyskin, Yu. I. Neshpor, A.A. Stepanian, V.P. Fomin and V.G. Shitov. 1989. Cerenkov Gamma-telescope GT-48 of the Crimean Astrophysical Observatory of the USSR Academy of Sciences, in : Very High Energy Gamma Ray Astronomy : proceedings of the International Workshop, Crimea, USSR, p. 11Google Scholar
  122. Wagner, Robert. 2008. Synoptic studies of seventeen blazars detected in very high-energy gamma-rays. Month Not. R. Astron. Soc. 385 : 119–135 ADSCrossRefGoogle Scholar
  123. Watson, Alan A. 1985. High-energy astrophysics : Is Cygnus X-3 a source of gamma rays or of new particles? Nature 315 : 454–455 ADSCrossRefGoogle Scholar
  124. Weekes, T.C. and K.E. Turver. 1977. Gamma-ray astronomy from 10–100 GeV : A new approach, in : ESA Recent Advances in Gamma-Ray Astronomy, pp. 279–286Google Scholar
  125. Weekes, T.C. 1983. A Fast Large Aperture Camera for Very High Energy Gamma-Ray Astronomy, in : Proceedings of the 17th International Cosmic Ray Conference, Paris, France, Vol. 8, pp. 34–37 Google Scholar
  126. Weekes, T.C. et al. (Whipple collaboration). 1989. Observation of TeV gamma rays from the Crab nebula using the atmospheric Cerenkov imaging technique. Astrophys. J. 342 : 379–395 ADSCrossRefGoogle Scholar
  127. Weekes, T.C. 2003. Very High Energy Gamma-Ray Astronomy, Institute of Physics, BristolGoogle Scholar
  128. Winston, Roland. 1970. Light Collection within the Framework of Geometrical Optics. J. Opt. Soc. Am. 60 : 245–247ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Max-Planck-Institut für PhysikMünchenGermany
  2. 2.Excellence Cluster “Origin and Structure of the Universe”Garching b. MünchenGermany

Personalised recommendations