Advertisement

The European Physical Journal H

, Volume 37, Issue 1, pp 75–114 | Cite as

Lord Kelvin on fluid mechanics

  • Alex D.D. CraikEmail author
Article

Abstract

William Thomson, Baron Kelvin of Largs, was the best-known British scientist of his day, who made fundamental contributions to many areas of physics and engineering. Though his life and work have been much studied, his contributions to fluid mechanics have received far less attention that those in heat, electricity, magnetism, geophysics, “ether theory” and telegraphy. After a general introduction, Kelvin’s writings on fluid mechanics are comprehensively surveyed. These reveal the interplay of his mathematical expertise and physical intuition, his deployment of physical analogies, and the origins of some of his work in later-abandoned speculations. Among lasting contributions are his circulation theorem and minimum energy theorem, the misnamed “Stokes’ theorem”, a generalization of Green’s theorem, the method of stationary phase, and much on vortices, instabilities, tides and water waves.

Keywords

Vortex Vorticity Vortex Ring Water Wave Vortex Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T   &   T′ = Treatise on Natural Philosophy, Part 1. 2 vols. (Thomson and Tait 1867 etc.).Google Scholar
  2. 2.
    MPP = Mathematical & Physical Papers 6 vols. (Kelvin 1882-1911).Google Scholar
  3. 3.
    Letters = The Correspondence between Sir George Gabriel Stokes and Sir William Thomson Baron Kelvin of Largs. 2 vols. (Wilson 1990).Google Scholar
  4. 4.
    PLA = Popular Lectures and Addresses 3 vols. (Kelvin 1889; 1894; 1891).Google Scholar
  5. 5.
    Airy, George B. 1826. Mathematical Tracts, edited by J. Smith, CambridgeGoogle Scholar
  6. 6.
    Airy, George B. 1841. Tides and Waves. Encyclopaedia Metropolitana (1817–1845), in Mixed Sciences, edited by HJ Rose, Vol. 3, Also in Trigonometry, On the Figure of the Earth, Tides and Waves [Airy’s articles from the Encyclopaedia], n.d., n.p.Google Scholar
  7. 7.
    Aref, Hassan. 2007. Point vortex dynamics : a classical mathematics playground. J. Math. Phys. 48 : 1-23MathSciNetCrossRefGoogle Scholar
  8. 8.
    Arnol’d, Vladimir I. 1965. Variational principle for three-dimensional steady-state flows of an ideal fluid. Prikl. Mat. Mekh. 29 : 846-851. English trs. J. Appl. Math. Mech. 29 : 1002-1008Google Scholar
  9. 9.
    Arnol’d, Vladimir I. 1966. Sur un principe variationnel pour les écoulements stationnaires des liquides parfaits et ses applications aux problèmes de stabilité non lineaires. J. Méchanique 5 : 29-43zbMATHGoogle Scholar
  10. 10.
    Batchelor, George K. 1953. The Theory of Homogeneous Turbulence. Cambridge Univ. Press, CambridgeGoogle Scholar
  11. 11.
    Benjamin, T. Brooke. 1957. Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2 : 554-574. Corrigendum (1958) 3 : 657MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Benjamin, T. Brooke. 1959. Shearing flow over a wavy boundary. J. Fluid Mech. 6 : 161-205MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Burchfield, Joe D. 1975. Lord Kelvin and the Age of the Earth. Science History Publications, New York; also Univ. of Chicago Press, 1990Google Scholar
  14. 14.
    Cartwright, David E. 1999. Tides : A Scientific History. Cambridge Univ. Press, CambridgeGoogle Scholar
  15. 15.
    Cauchy, Augustin-L. 1827. Mémoire sur la théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie. Mém. Acad. R. Sci. Inst. France (Prix de 1815 et 1816) 1 : 3-312Google Scholar
  16. 16.
    Craik, Alex D.D. 1985. Wave Interactions and Fluid Flows. Cambridge Univ. Press, CambridgeGoogle Scholar
  17. 17.
    Craik, Alex D.D. 2004. The origins of water wave theory. Annu. Rev. Fluid Mech. 36 : 1-28MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Craik, Alex D.D. 2005. George Gabriel Stokes on water wave theory. Annu. Rev. Fluid Mech. 37 : 23-42MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Craik, Alex D.D. 2007. Mr Hopkins’ Men : Cambridge reform and British mathematics in the nineteenth century. Springer, New York, etc.Google Scholar
  20. 20.
    Craik, Alex D.D. 2008. Educating William : Belfast, Glasgow, and Cambridge. Chap. 2, pp. 23–43, Flood, McCartney and Whitaker, 2008Google Scholar
  21. 21.
    Craik, Alex D.D. 2010. Thomas Young on fluid mechanics. J. Engng. Math. 67 : 95-113MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Crilly, Tony. 2004. The Cambridge Mathematical Journal and its descendants : the linchpin of a research community in the early and mid-Victorian Age. Historia Mathematica 31 : 455-497MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Darrigol, Olivier. 2000. Electrodynamics from Ampère to Einstein. Oxford Univ. Press, OxfordGoogle Scholar
  24. 24.
    Darrigol, Olivier. 2003. The spirited horse, the engineer, and the mathematician : water waves in nineteenth-century hydrodynamics. Arch. Hist. Exact Sci. 58 : 21-95MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Darrigol, Olivier. 2005. Worlds of Flow : a history of hydrodynamics from the Bernoullis to Prandtl. Oxford Univ. Press, OxfordGoogle Scholar
  26. 26.
    Darwin, George H. 1907-1916. Scientific Papers 5 vols. Cambridge Univ. Press, CambridgeGoogle Scholar
  27. 27.
    Dikii, L.A. 1965. On the nonlinear theory of hydrodynamic stability. Prikl. Mat. Mekh. 29 : 852-855. English trs. J. Appl. Math. Mech. 29 : 1009-1012Google Scholar
  28. 28.
    Drazin, Philip G. and Reid, William H. 1981. Hydrodynamic Stability. Cambridge Univ. Press, CambridgeGoogle Scholar
  29. 29.
    Dritschel, David G. 1988. The repeated filamentation of two-dimensional vorticity interfaces. J. Fluid Mech. 194 : 511-547MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    Eckert, Michael. 2006. The Dawn of Fluid Mechanics. A Discipline between Science and Technology. Wiley-VCH, WeinheimGoogle Scholar
  31. 31.
    Eckert, Michael. 2010. The troublesome birth of hydrodynamic stability theory : Sommerfeld and the turbulence problem. Eur. Phys. J. H 35 : 29-51CrossRefGoogle Scholar
  32. 32.
    England, P., Molnar, P. and Richter, F. 2007. John Perry’s neglected critique of Kelvin’s age for the Earth : a missed opportunity in geodynamics. Geol. Soc. Am. Today 17 : 4-9Google Scholar
  33. 33.
    Epple, Moritz. 1999. Geometric aspects in the development of knot theory, in History of Topology, edited by I.M. James, pp. 301–357. North Holland, AmsterdamGoogle Scholar
  34. 34.
    Flood, Raymond. 2008a. Thomson and Tait : The Treatise on Natural Philosophy. Chap. 11, pp. 175-191, Flood, McCartney and Whitaker, 2008Google Scholar
  35. 35.
    Flood, Raymond, McCartney, Mark and Whitaker, Andrew (Eds.). 2008b. Kelvin : Life, Labours and Legacy. Oxford Univ. Press, OxfordGoogle Scholar
  36. 36.
    Fourier, Joseph. 1822. Théorie analytique de la chaleur. Firmin Didot, ParisGoogle Scholar
  37. 37.
    Gibbs-Smith, Charles H. 1960. The aeroplane : an historical survey of its origins and development. Science Museum, HMSO, London.Google Scholar
  38. 38.
    Grattan-Guinness, Ivor. 2008. On the Early Work of William Thomson : Mathematical Physics and Methodology in the 1840s. Chap. 3, pp. 44–55, Flood, McCartney and Whitaker, 2008Google Scholar
  39. 39.
    Gray, Andrew. 1908. Lord Kelvin : an account of his scientific life and work. Dent, London and Dutton, New YorkGoogle Scholar
  40. 40.
    Green, George. 1828. Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism. privately printed, NottinghamGoogle Scholar
  41. 41.
    Helmholtz, Hermann. 1858. Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. Reine Angewandte Mathematik 55 : 25-55zbMATHCrossRefGoogle Scholar
  42. 42.
    Helmholtz, Hermann. 1867. On the integrals of the hydrodynamic equations, which express vortex motion. Philos. Mag. 33 : 485-512 [Translation by P.G. Tait of (Helmholtz 1858)]Google Scholar
  43. 43.
    Hicks, William M. 1885. Researches on the theory of vortex rings. Part II. Phil. Trans. R. Soc. London 176 : 725-780CrossRefGoogle Scholar
  44. 44.
    Jeffreys, Harold. 1925. On the formation of water wave by wind. Proc. Roy. Soc. Lond. A 107 : 189-206ADSzbMATHCrossRefGoogle Scholar
  45. 45.
    Jeffreys, Harold. 1926. On the formation of water waves by wind (Second paper). Proc. Roy. Soc. Lond. A 110 : 241-247ADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Kelland, Philip. 1837. Theory of Heat. Deighton. CambridgeGoogle Scholar
  47. 47.
    Kelvin, Baron (W. Thomson). 1882-1911. [MPP] Mathematical & Physical Papers 6 vols. (4-6 ed. J. Larmor). Cambridge Univ. Press, CambridgeGoogle Scholar
  48. 48.
    Kelvin, Baron (W. Thomson). 1872. Reprint of Papers on Electrostatics and Magnetism, 2nd edn. 1884. Macmillan, LondonGoogle Scholar
  49. 49.
    Kelvin, Baron (W. Thomson). 1889; 1894; 1891. [PLA] Popular Lectures and Addresses. 3 vols. Macmillan, LondonGoogle Scholar
  50. 50.
    Kelvin, Baron (W. Thomson). 1904. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light. Clay, LondonGoogle Scholar
  51. 51.
    Kerswell, Richard R. 2002. Elliptical instability. Annu. Rev. Fluid Mech. 34 : 83-113MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Kida, Shigeo & Takaoka, M. 1994. Vortex reconnection. Annu. Rev. Fluid Mech. 26 : 169-189MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    Knott, Cargill G. 1911. Life and Scientific Work of Peter Guthrie Tait. Cambridge Univ. Press, CambridgeGoogle Scholar
  54. 54.
    Kragh, Helge. 2002. The vortex atom : a Victorian theory of everything. Centaurus 44 : 32-114MathSciNetCrossRefGoogle Scholar
  55. 55.
    Lagrange, Joseph-Louis 1788. 1st edn. Méchanique analitique Desaint, Paris. 3rd edn. Mécanique analytique. 1853-55, 2 vols. ed. M.J. Bertrand. Mallet-Bachelier, Paris. Also in Oeuvres de Lagrange, ed. J.-A. Serret, 11-12 (1888-89). Gauthier-Villars, ParisGoogle Scholar
  56. 56.
    Lamb, Horace. 1879. A Treatise on the Mathematical Theory of the Motion of Fluids. Cambridge Univ. Press, CambridgeGoogle Scholar
  57. 57.
    Lamb, Horace. 1895; 1916; 1932. Hydrodynamics (4th edn. 1916; 6th edn. 1932). Cambridge Univ. Press, CambridgeGoogle Scholar
  58. 58.
    Laplace, Pierre-Simon 1799-1825. Traité de mécanique céleste, 5 vols. Duprat, ParisGoogle Scholar
  59. 59.
    Lighthill, M. James. 1978. Waves in Fluids. Cambridge Univ. Press, CambridgeGoogle Scholar
  60. 60.
    Lin, Chia-Ch’iao. 1955. The Theory of Hydrodynamic Stability. Cambridge Univ. Press, CambridgeGoogle Scholar
  61. 61.
    Lindley, David. 2004. Degrees Kelvin : The Genius and Tragedy of William Thomson. Aurum, LondonGoogle Scholar
  62. 62.
    Lützen, Jesper. 1984. Joseph Liouville’s work on the figures of equilibrium of a rotating mass of fluid. Arch. Hist. Exact Sci. 30 : 113-166MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Maslowe, Sherwin A. 1986. Critical layers in shear flows. Annu. Rev. Fluid Mech. 18 : 405-432MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    Maxwell, James Clerk. 1856. On Faraday’s lines of force. Trans. Cambridge Philos. Soc. 10 : 27-83. Also in The Scientific Papers of James Clerk Maxwell 1 : 155-229Google Scholar
  65. 65.
    Maxwell, James Clerk. 1867. On the Dynamical Theory of Gases. Phil. Trans. Roy. Soc. Lond. 157 : 49-88. Also in The Scientific Papers of James Clerk Maxwell 2 : 26CrossRefGoogle Scholar
  66. 66.
    Maxwell, James Clerk. 1873. A Treatise on Electricity and Magnetism. 2 vols. Clarendon, OxfordGoogle Scholar
  67. 67.
    Miles, John W. 1957. On the generation of surface waves by shear flows. J. Fluid Mech. 3 : 185-204. Corrigenda (1959) 6 : 582MathSciNetADSzbMATHCrossRefGoogle Scholar
  68. 68.
    Miles, John W. 1959a. On the generation of surface waves by shear flows. Part 2. J. Fluid Mech. 6 : 568-582MathSciNetADSzbMATHCrossRefGoogle Scholar
  69. 69.
    Miles, John W. 1959b. On the generation of surface waves by shear flows. Part 3 : Kelvin-Helmholtz instability. J. Fluid Mech. 6 : 583-598MathSciNetADSzbMATHCrossRefGoogle Scholar
  70. 70.
    Moffatt, H. Keith. 2002. G.K. Batchelor and the homogenization of turbulence. Annu. Rev. Fluid Mech. 34 : 19-35MathSciNetADSCrossRefGoogle Scholar
  71. 71.
    Moffatt, H. Keith. 2008. Vortex dynamics : the legacy of Helmholtz and Kelvin. IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence, edited by A.V. Borisov et al., Springer, pp. 1–10Google Scholar
  72. 72.
    Poisson, Siméon D. 1818. Mémoire sur la théorie des ondes. Mém. Acad. R. Sci. Inst. Fr. 2nd Ser. 1 : 70-186Google Scholar
  73. 73.
    Rayleigh, Baron (J.W. Strutt). 1877-1978 etc. The Theory of Sound. 2 vols. Macmillan, London. Also Dover 1945Google Scholar
  74. 74.
    Rayleigh, Baron (J.W. Strutt). 1880. On the stability, or instability, of certain fluid motions. Proc. London Math. Soc. Ser. 1, 11 : 57-70 (Also Scientific Papers 1 : 474-487)zbMATHCrossRefGoogle Scholar
  75. 75.
    Rayleigh, Baron (J.W. Strutt).1883. The form of standing waves on the surface of running water. Proc. London Math. Soc. Ser. 1, 15 : 69-78 (Also Scientific Papers 2 : 258-267)CrossRefGoogle Scholar
  76. 76.
    Rayleigh, Baron (J.W. Strutt). 1892. On the question of the stability of the flow of fluids. Philos. Mag. 34 : 59-70 (Also Scientific Papers 3 : 575-584)zbMATHGoogle Scholar
  77. 77.
    Reynolds, Osborne. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. Roy. Soc. London 174 : 935-982zbMATHCrossRefGoogle Scholar
  78. 78.
    Reynolds, Osborne. 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc. Lond. A 186, 123-164. Also in Reynolds’ Papers on Mechanical and Physical Subjects 3 vols. (1900-1903), 2 : 535-577. Cambridge Univ. Press, CambridgeADSzbMATHCrossRefGoogle Scholar
  79. 79.
    Russell, John Scott. 1839. Experimental researches into the laws of certain hydrodynamic phenomena that accompany the motion of floating bodies, and have not previously been reduced into conformity with the known laws of the resistance of fluids. Trans. R. Soc. Edinburgh 14 : 47-109Google Scholar
  80. 80.
    Russell, John Scott. 1844. Report on Waves. Rep. Br. Assoc. Adv. Sci., 311-390Google Scholar
  81. 81.
    Sharlin, Harold I. 1979. Lord Kelvin : The Dynamic Victorian. Penn. State Univ. Press, University Park & LondonGoogle Scholar
  82. 82.
    Siegel, Daniel M. 1981. Thomson, Maxwell, and the universal ether in Victorian physics. Chap. 8, pp. 239-268, in Conceptions of Ether : Studies in the history of ether theories 1740-1900, edited by Cantor, G.N. and Hodge, M.J.S. Cambridge Univ. Press, CambridgeGoogle Scholar
  83. 83.
    Smith, Crosbie and Wise, M. Norton. 1989. Energy and Empire : A Biographical Study of Lord Kelvin. Cambridge Univ. Press, CambridgeGoogle Scholar
  84. 84.
    Stuart, J. Trevor. 1971. Nonlinear stability theory. Annu. Rev. Fluid Mech. 3 : 347-370ADSCrossRefGoogle Scholar
  85. 85.
    Taylor, Geoffrey I. 1923. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223 : 289-343ADSzbMATHCrossRefGoogle Scholar
  86. 86.
    Thompson, Silvanus P. 1910. The Life of William Thomson Baron Kelvin of Largs, 2 vols. Macmillan, LondonGoogle Scholar
  87. 87.
    Thomson, Joseph J. 1883. A Treatise on the Motion of Vortex Rings. Macmillan, LondonGoogle Scholar
  88. 88.
    Thomson W (Baron Kelvin), Tait PG. []. 1867. Treatise on Natural Philosophy, Part 1. 2nd enlarged edn. 2 vols. 1886, 1890 : reprinted 1912. Cambridge Univ. Press, CambridgeGoogle Scholar
  89. 89.
    Thomson, William (Baron Kelvin) and Tait, Peter G. 1873. Elements of Natural Philosophy. Cambridge Univ. Press, CambridgeGoogle Scholar
  90. 90.
    Thomson, William : see also “Kelvin, Baron”Google Scholar
  91. 91.
    Whittaker, Edmund T. 1951. A History of the Theories of Aether and Electricity. Vol.1 : The classical theories. 2nd enlarged edn. Nelson, LondonGoogle Scholar
  92. 92.
    Wilson, David B. 1985. The educational matrix : physics education at early Victorian Cambridge, Edinburgh and Glasgow Universities. Harman, 1985, pp. 12-48Google Scholar
  93. 93.
    Wilson, David B. 1987. Kelvin & Stokes, a Comparative Study in Victorian Physics. Adam Hilger, BristolGoogle Scholar
  94. 94.
    Wilson David B. (ed.) 1990. [Letters] The Correspondence between Sir George Gabriel Stokes and Sir William Thomson Baron Kelvin of Largs. 2 vols. Cambridge Univ. Press, CambridgeGoogle Scholar
  95. 95.
    Wise, M. Norton. 1979. William Thomson’s mathematical route to energy conservation : a case study of the role of mathematics in concept formation. Hist. Stud. Phys. Sci. 10 : 49-83Google Scholar
  96. 96.
    Young, Arthur P. 1945. Lord Kelvin, Physicist, Mathematician, Engineer. Longmans, Green, LondonGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.School of Mathematics & Statistics, University of St AndrewsScotlandUK

Personalised recommendations