Neutrino. History of a unique particle

Abstract

Neutrinos are the only fundamental fermions that have no electric charge. Because of that neutrinos have no direct electromagnetic interaction and at relatively small energies they can take part only in weak processes with virtual W ± and Z 0 bosons (like β-decay of nuclei, inverse β process \hbox{$\bar\nu_{e}+p\to e^{+}n$} ν̅ e  + p → e  +  n , etc.). Neutrino masses are many orders of magnitude smaller than masses of charged leptons and quarks. These two circumstances make neutrinos unique, special particles. The history of the neutrino is very interesting, exciting and instructive. We try here to follow the main stages of the neutrino history starting from the Pauli proposal and finishing with the discovery and study of neutrino oscillations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C.D. Ellis, W.A. Wooster, Proc. Roy. Soc. A 117, 109 (1927)

    ADS  Article  Google Scholar 

  2. 2.

    J. Chadwick, Nature 193, 312 (1932)

    Article  Google Scholar 

  3. 3.

    W. Heisenberg, Z. Phys. 77, 1 (1932); Z. Phys. 78, 156 (1932)

    MathSciNet  ADS  Article  Google Scholar 

  4. 4.

    E. Majorana, Z. Phys. 82, 137 (1933)

    ADS  Article  Google Scholar 

  5. 5.

    D. Ivanenko, Nature 129, 798 (1932)

    ADS  Article  Google Scholar 

  6. 6.

    E. Fermi, Z. Phys. 88, 161 (1934)

    ADS  Article  Google Scholar 

  7. 7.

    F. Perrin, Comptes Rendus 197, 1625 (1933)

    Google Scholar 

  8. 8.

    G. Gamow, E. Teller, Phys. Rev. 49, 895 (1936)

    ADS  MATH  Article  Google Scholar 

  9. 9.

    H. Bethe, R. Peierls, Nature 133, 532 (1934)

    ADS  MATH  Article  Google Scholar 

  10. 10.

    B. Pontecorvo, Report PD-205, Chalk River Laboratory, 1946

  11. 11.

    B.T. Cleveland et al., Astrophys. J. 496, 505 (1998)

    ADS  Article  Google Scholar 

  12. 12.

    B. Pontecorvo, Phys. Rev. 72, 246 (1947)

    ADS  Article  Google Scholar 

  13. 13.

    G. Puppi, Nuovo Cimento 5, 587 (1948)

    Article  Google Scholar 

  14. 14.

    O. Klein, Nature 161, 897 (1948)

    ADS  Article  Google Scholar 

  15. 15.

    C.N. Yang, J. Tiomno, Phys. Rev. 79, 495 (1950)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  16. 16.

    T.D. Lee, C.N. Yang, Phys. Rev. 104, 254 (1956)

    ADS  Article  Google Scholar 

  17. 17.

    C.S. Wu et al., Phys. Rev. 105, 1413 (1957)

    ADS  Article  Google Scholar 

  18. 18.

    R.L. Garwin, L.M. Lederman, W. Weinrich, Phys. Rev. 105, 1415 (1957)

    ADS  Article  Google Scholar 

  19. 19.

    L.D. Landau, Nucl. Phys. 3, 127 (1957)

    Article  Google Scholar 

  20. 20.

    T.D. Lee, C.N. Yang, Phys. Rev. 105, 1671 (1957)

    MathSciNet  ADS  Article  Google Scholar 

  21. 21.

    A. Salam, Nuovo Cim. 5, 299 (1957)

    MathSciNet  Article  Google Scholar 

  22. 22.

    H. Weil, Z. Physik 56, 330 (1929)

    ADS  Article  Google Scholar 

  23. 23.

    W. Pauli, Handbuch der Physik (Springer Verlag, Berlin, 1933), Vol. 24, pp. 226-227

  24. 24.

    E. Majorana, Nuovo Cimento 5, 171 (1937)

    Google Scholar 

  25. 25.

    M. Goldhaber, L. Grodzins, A.W. Sunyar, Phys. Rev. 109, 1015 (1958)

    ADS  Article  Google Scholar 

  26. 26.

    R.P. Feynman, M. Gell-Mann, Phys. Rev. 109, 193 (1958)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  27. 27.

    E.C.G. Sudarshan, R.E. Marshak, Phys. Rev. 109, 1860 (1958)

    ADS  Article  Google Scholar 

  28. 28.

    S.S. Gerstein, J.B. Zeldovich, Sov. Phys. JETP 2, 576 (1956)

    Google Scholar 

  29. 29.

    H.L. Anderson, C. Lattes, Nuovo Cimento 6, 1356 (1957)

    Article  Google Scholar 

  30. 30.

    T. Fazzini, G. Fidecaro et al., Phys. Rev. Lett. 1, 247 (1958)

    ADS  Article  Google Scholar 

  31. 31.

    F. Reines, H.S. Gurr, H.W. Sobel, Phys. Rev. Lett. 37, 315 (1976)

    ADS  Article  Google Scholar 

  32. 32.

    N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963)

    ADS  Article  Google Scholar 

  33. 33.

    O. Klein, Proc. Symp. on Les Nouvelles Theories de la Physique, Warsaw, 1938 (Institut International de Coopération Intellectuelle, Paris, 1939), p. 6

  34. 34.

    F. Reines, C.L. Cowan, Phys. Rev. 92, 830 (1953); F. Reines, C.L. Cowan, Nature 178, 446 (1956); F. Reines, C.L. Cowan, Phys. Rev. 113, 273 (1959)

    ADS  Article  Google Scholar 

  35. 35.

    R. Davis, Bull. Am. Phys. Soc., Washington meeting, 1959

  36. 36.

    B. Pontecorvo, Journal de Physique 43, C8-221 (1959)

    Google Scholar 

  37. 37.

    G. Danby, J.-M. Gaillard, K. Goulianos, L.M. Lederman, N. Mistry, M. Schwartz, J. Steinberger, Phys. Rev. Lett. 9, 36 (1962)

    ADS  Article  Google Scholar 

  38. 38.

    G. Feinberg, Phys. Rev. 110, 1482 (1958)

    ADS  Article  Google Scholar 

  39. 39.

    B. Pontecorvo, Sov. Phys. JETP 10, 1236 (1960)

    Google Scholar 

  40. 40.

    K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    ADS  Article  Google Scholar 

  41. 41.

    S.L. Glashow, J. Iliopoulos, L. Maiani, Phys. Rev. D 2, 1258 (1970)

    Article  Google Scholar 

  42. 42.

    S.M. Bilenky, B. Pontecorvo, Phys. Rep. 41, 225 (1978)

    ADS  Article  Google Scholar 

  43. 43.

    M.L. Perl et al., Phys. Rev. Lett. 35, 1489 (1975)

    ADS  Article  Google Scholar 

  44. 44.

    K. Kodama et al. (DONUT Collaboration), Physics Letters B 504, 218 (2001)

    ADS  Article  Google Scholar 

  45. 45.

    M. Kobayashi, T. Maskawa, Progress of Theoretical Physics 49, 652 (1973)

    ADS  Article  Google Scholar 

  46. 46.

    K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    ADS  Article  Google Scholar 

  47. 47.

    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)

    ADS  Article  Google Scholar 

  48. 48.

    A. Salam, Proc. of the Eighth Nobel Symposium edited by N. Svartholm (Wiley-Interscience, New York, 1968)

  49. 49.

    S. Chatrchyan et al., Phys. Lett. B 716, 30 (2012)

    ADS  Article  Google Scholar 

  50. 50.

    G. Aad et al., Phys. Lett. B 716, 1 (2012)

    ADS  Article  Google Scholar 

  51. 51.

    S.L. Glashow, Nucl. Phys. 22, 579 (1961)

    Article  Google Scholar 

  52. 52.

    G. 't Hooft, Nucl. Phys. B 35, 1967 (1971)

    Article  Google Scholar 

  53. 53.

    C.N. Yang, R. Mills, Phys. Rev. 96, 191 (1954)

    MathSciNet  ADS  Article  Google Scholar 

  54. 54.

    F.J. Hasert et al., Phys. Lett. B 46, 138 (1973)

    ADS  Article  Google Scholar 

  55. 55.

    G.P. Zeller et al., Phys. Rev. Lett. 88, 091802 (2002)

    ADS  Article  Google Scholar 

  56. 56.

    M. Gell-Mann, A. Pais, Phys. Rev. 97, 1387 (1955)

    MathSciNet  ADS  Article  Google Scholar 

  57. 57.

    B. Pontecorvo, J.Exptl. Theoret. Phys. 33, 549 (1957) [Sov. Phys. JETP 6 (1958) 429]

    Google Scholar 

  58. 58.

    B. Pontecorvo, J.Exptl. Theoret. Phys. 34, 247 (1958) [Sov. Phys. JETP 7 (1958) 172]

    Google Scholar 

  59. 59.

    B. Pontecorvo, J. Exptl. Theoret. Phys. 53, 1717 (1967) [Sov. Phys. JETP 26, 984 (1968)]

    Google Scholar 

  60. 60.

    R. Davis et al., Proc. Conf. “Neutrino 72”, Hungary (1972), Vol. I, p. 29

  61. 61.

    V. Gribov, B. Pontecorvo, Phys. Lett. B 28, 493 (1969)

    ADS  Article  Google Scholar 

  62. 62.

    J. Bahcall, S. Frautschi, Phys. Lett. 29, 623 (1969)

    Article  Google Scholar 

  63. 63.

    S.M. Bilenky, B. Pontecorvo, Phys. Lett. B 61, 248 (1976); Yad. Fiz. 3, 603 (1976)

    ADS  Article  Google Scholar 

  64. 64.

    H. Fritzsch, P. Minkowski, Phys. Lett. B 62, 72 (1976)

    ADS  Article  Google Scholar 

  65. 65.

    S. Eliezer, A. Swift, Nucl. Phys. B 105, 45 (1976)

    ADS  Article  Google Scholar 

  66. 66.

    Z. Maki, M. Nakagava, S. Sakata, Prog. Theor. Phys. 28, 870 (1962)

    ADS  MATH  Article  Google Scholar 

  67. 67.

    S.M. Bilenky, B. Pontecorvo, Phys. Rep. 41, 225 (1978)

    ADS  Article  Google Scholar 

  68. 68.

    S.M. Bilenky, B. Pontecorvo, Lett. Nuovo Cim. 17, 569 (1976)

    Article  Google Scholar 

  69. 69.

    K.S. Hirata et al., Phys. Rev. Lett. 63, 16 (1989)

    ADS  Article  Google Scholar 

  70. 70.

    K. Hirata et al., Phys. Rev. Lett. 58, 1490 (1987)

    ADS  Article  Google Scholar 

  71. 71.

    P. Minkowski, Phys. Lett. B 67, 421 (1977); M. Gell-Mann, P. Ramond, R. Slansky, in Supergravity, p. 315, edited by F. van Nieuwenhuizen, D. Freedman, North Holland, Amsterdam, (1979); T. Yanagida, Proc. of the Workshop on Unified Theory and the Baryon Number of the Universe, KEK, Japan, (1979); S.L. Glashow, NATO Adv.Study Inst. Ser. B Phys. 59, 687(1979); R.N. Mohapatra, G. Senjanović, Phys. Rev. D 23, 165 (1981)

  72. 72.

    P. Anselmann et al. (GALLEX Collaboration), Phys. Lett. B 327, 377 (1994)

    ADS  Article  Google Scholar 

  73. 73.

    J.N. Abdurashitov et al. (SAGE Collaboration), Phys. Lett. B 328, 234 (1994)

    ADS  Article  Google Scholar 

  74. 74.

    L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); S.P. Mikheev, A. Yu. Smirnov, Nuovo Cim. C 9, 17 (1986)

    Google Scholar 

  75. 75.

    Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 81, 1562 (1998). (Super-Kamiokande Collaboration) R. Wendell et al. (Super-Kamiokande Collaboration), Phys.Rev. D 81, 092004 (2010)

    Google Scholar 

  76. 76.

    Q.R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 89, 011301 (2002) : B. Aharmim et al. (SNO Collaboration) arXiv:1109.0763

    Google Scholar 

  77. 77.

    K. Eguchi et al. (KamLAND Collaboration), Phys. Rev. Lett. 90, 021802 (2003); T. Araki et al. (KamLAND Collaboration), Phys. Rev. Lett. 94, 081801 (2005). Abe, S. et al. (KamLAND Collaboration), Phys. Rev. Lett. 100, 221803 (2008)

    Google Scholar 

  78. 78.

    M.H. Ahn et al. (K2K Collaboration), Phys. Rev. Lett. 90, 041801 (2003)

    ADS  Article  Google Scholar 

  79. 79.

    D.G. Michael et al. (MINOS Collaboration), Phys. Rev. Lett. 97, 191801 (2006). P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett. 106, 181801 (2011)

  80. 80.

    M. Apollonio et al. (CHOOZ Collaboration), Eur. Phys. J. C 27, 331 (2003)

    ADS  Article  Google Scholar 

  81. 81.

    K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107, 041801 (2011)

    ADS  Article  Google Scholar 

  82. 82.

    M. Gunther et al. (Heidelberg - Moscow Collaboration), Phys. Rev. D 55, 54 (1997)

    ADS  Article  Google Scholar 

  83. 83.

    A. Aguilar et al. (LSND Collaboration), Phys. Rev. D 64, 112007 (2001)

    ADS  Article  Google Scholar 

  84. 84.

    Y. Abe et al. (Double Chooz Collaboration), arXiv:1112.6353v3

  85. 85.

    F.P. An et al. (Daya Bay Collaboration), Phys. Rev. Lett. 108, 171803 (2012); arXiv:1203.1669v1

    ADS  Article  Google Scholar 

  86. 86.

    J. Ahn et al. (Reno Collaboration), Phys. Rev. Lett. 108, 191802 (2012)

    ADS  Article  Google Scholar 

  87. 87.

    S. Davidson, E. Nardi, Y. Nir, Phys. Rep. 466, 105 (2008)

    ADS  Article  Google Scholar 

  88. 88.

    G. Senjanovic, arXiv:1012.4104

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S.M. Bilenky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bilenky, S. Neutrino. History of a unique particle. EPJ H 38, 345–404 (2013). https://doi.org/10.1140/epjh/e2012-20068-9

Download citation

Keywords

  • Neutrino Masse
  • Neutrino Oscillation
  • Charged Lepton
  • Charged Current
  • Sterile Neutrino