The European Physical Journal H

, Volume 37, Issue 5, pp 659–708 | Cite as

The history of X-ray free-electron lasers

  • C. PellegriniEmail author


The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 Å, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 1013 to 1011, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.


Electron Bunch Bunch Length Gain Length Coherent Light Source Undulator Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allaria, E. et al. 2006. FERMI@ELETTRA : a seeded FEL facility for EUV and soft X-rays. Proc. of the 2006 International Free Electron Laser Conf., Berlin, pp. 166–169Google Scholar
  2. 2.
    Alley, R. et al. 1999. The design for the LCLS RF Photoinjector. Nucl. Instr. Meth. A 429: 324-331ADSCrossRefGoogle Scholar
  3. 3.
    Andruszkow, J. et al. 2000. First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength. Phys. Rev. Lett. 85: 3825-3829ADSCrossRefGoogle Scholar
  4. 4.
    Arthur, J., G. Materlik and H. Winick (Eds.) 1994. Workshop on Scientific Applications of Coherent X-Rays. SLAC Rep., p. 437Google Scholar
  5. 5.
    Ayvazyan, V. et al. 2002. Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime. Phys. Rev. Lett. 88: 104802ADSCrossRefGoogle Scholar
  6. 6.
    Babzien, M. et al. 1998. Observation of self-amplified spontaneous emission in the near-infrared and visible wavelengths. Phys. Rev. E 57: 6093-6096ADSCrossRefGoogle Scholar
  7. 7.
    Bane, K. 1987. Wakefield effects in a linear collider. Amer. Inst. Phys. Conf. Proc. 153: 971-981Google Scholar
  8. 8.
    Batchelor, K., H. Kirk, K. McDonald, J. Sheehan and M. Woodle. 1988. Development of a High Brightness Electrpon Gun for the Accelerator Test Facil;ity at Brookhaven National Laboratory. Proc. of the 1988 European Particle Accelerator Conf., Rome, pp. 54–958Google Scholar
  9. 9.
    Becker, W. and J.K. McIver. 1983. Fully quantized many-particle theory of a free-electron laser. Phys. Rev. A 27: 1030-1043ADSCrossRefGoogle Scholar
  10. 10.
    Becker, W. and M.S. Zubairy. 1982. Photon statistics of a free-electron laser. Phys. Rev. A 25: 2200-2207MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Belkacem, A. et al. 2007. Design studies for a high repetition rate FEL facility at LBNL. Synchrotron Radiat. News 20: 20-27CrossRefGoogle Scholar
  12. 12.
    Ben-Zvi, I., L.F. Di Mauro, S. Krinsky, M.G. White and L.H. Yu. 1991. Proposed UV FEL user facility at BNL. Nucl. Instr. Meth. A 304: 181-186ADSCrossRefGoogle Scholar
  13. 13.
    Bertolotti, M. 2005. History of the laser. Institute of Physics Publishing, BristolGoogle Scholar
  14. 14.
    Birgenau, R.J. et al. 1997. Report of the Basic Energy Sciences Advisory Committee Panel on D.O.E. synchrotron radiation sources and science,
  15. 15.
    Bonifacio, R., F. Casagrande and G. Casati. 1982. Cooperative and Chaotic Transition of a Free Electron Laser Hamiltonian Model. Opt. Commun. 40: 219-223ADSCrossRefGoogle Scholar
  16. 16.
    Bonifacio, R., F. Casagrande and C. Pellegrini. 1987. Hamiltonian model of a free-electron laser. Opt. Commun. 61: 55-60ADSCrossRefGoogle Scholar
  17. 17.
    Bonifacio, R., L. De Salvo Souza, P. Pierini and E.T. Scharlemann. 1990. Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier. Nucl. Instr. Meth. A 296: 787-790ADSCrossRefGoogle Scholar
  18. 18.
    Bonifacio, R., L. De Salvo, P. Pierini, N. Piovella and C. Pellegrini. 1994. Spectrum, Temporal Structure and Fluctuations in a High-Gain free-electron laser starting from noise. Phys. Rev. Lett. 73: 70-73ADSCrossRefGoogle Scholar
  19. 19.
    Bonifacio, R., C. Pellegrini and L. Narducci. 1984. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50: 373-378ADSCrossRefGoogle Scholar
  20. 20.
    Borland, M. et al. 2002. Start-to-end simulation of self amplified spontaneous emission free-electron lasers from the gun through the undulator. Nucl. Instr. Meth. A 483: 268-272ADSCrossRefGoogle Scholar
  21. 21.
    Boscolo, I. and V. Stagno. 1982. A Study of a transverse optical klystrin in Adone (TOKA). Nucl. Instr. Meth. A 198: 483-496CrossRefGoogle Scholar
  22. 22.
    Bosco, P., W.B. Colson and R.A. Freeman. 1983. Quantum/classical mode evolution in free electron laser oscillators. IEEE J. Quantum Electron. QE-19: 272-281ADSCrossRefGoogle Scholar
  23. 23.
    Carlsten, B.E. 1989. New photoelectron injector design for the Los Alamos national laboratory XUV FEL accelerator. Nucl. Instr. Meth. A 285: 313-319ADSCrossRefGoogle Scholar
  24. 24.
    Chapman, H. et al. 2006. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys. 2: 839-843ADSCrossRefGoogle Scholar
  25. 25.
    Chapman, H. et al. 2011. Femtosecond X-ray protein nanocrystallography. Nature 470: 73-78ADSCrossRefGoogle Scholar
  26. 26.
    Chattopadhyay, S., M. Cornacchia, C. Pellegrini and I. Lindau (Eds.) 2001. Physics of, and Science with, X-ray free-electron lasers. Amer. Inst. Phys. Conf. Proc. 581: 1-236Google Scholar
  27. 27.
    Colson, W.B. 1977. One-body electrodynamics in a free electron laser. Phys. Lett. A 64: 190-192ADSCrossRefGoogle Scholar
  28. 28.
    Cornacchia, M. and H. Winick (Eds.) 1992. Proc. of a Workshop on IV Generation Light Sources, SSRL/SLAC Rep. 92/02 Google Scholar
  29. 29.
    Cornacchia, M. et al. 1986. Design concepts of a storage ring for a high power XUV free electron laser. Nucl. Instr. Meth. A 250: 57-63ADSCrossRefGoogle Scholar
  30. 30.
    Cornacchia, M. et al. 1998. LCLS Design Study Report, Stanford Linear Accelerator Center, SLAC R-521Google Scholar
  31. 31.
    Csonka, P. 1978a. Suggested method for coherent X-Ray production by combined X-ray and low energy photon pumping. Phys. Rev. A 13: 405-410ADSCrossRefGoogle Scholar
  32. 32.
    Csonka, P. 1978b. Suggestion for X-ray laser holography. Part. Accel. 8: 161-165Google Scholar
  33. 33.
    Dattoli, G., J.C. Gallardo, A. Renieri, M. Richetta and A. Torre. 1985. Quantum coherence properties of the FEL. Nucl. Instr. Meth. A 237: 93-99ADSCrossRefGoogle Scholar
  34. 34.
    Dattoli, G., A. Marino, A. Renieri and F. Romanelli. 1981. Progress in the Hamiltonian picture of the free-electron laser. IEEE J. Quantum Electron. QE-17: 1371-1387ADSCrossRefGoogle Scholar
  35. 35.
    Deacon, D.A.G. et al. 1977. First operation of a free-electron laser. Phys. Rev. Lett. 38: 892-894ADSCrossRefGoogle Scholar
  36. 36.
    De Ninno, G. et al. 2009. FEL Commissioning of the first stage of Fermi@Elettra. Proc. of the 2009 FEL Conf., Liverpool, pp. 635–638Google Scholar
  37. 37.
    Derbenev, Y.S., A.M. Kondratenko and E.L. Saldin. 1982. On the possibility of using a free electron laser for polarization control in a storage ring. Nucl. Instr. Meth. A 193: 415-421ADSCrossRefGoogle Scholar
  38. 38.
    Ding, Y. et al. 2009a. Start-to-End Simulations of the LCLS Accelerator and FEL Performance at Very Low Charge. Proc. of the 2009 Part. Acc. Conf., Vancouver, pp. 2355-2357Google Scholar
  39. 39.
    Ding, Y. et al. 2009b. Measurements and Simulations of Ultralow Emittance and Ultrashort Electron Beams in the Linac Coherent Light Source. Phys. Rev. Lett. 102: 254801ADSCrossRefGoogle Scholar
  40. 40.
    Dowell, D. et al. 2008. The Development of the Linac Coherent Light Source RF Gun. SLAC-Pub-13401Google Scholar
  41. 41.
    Elias, L. et al. 1976. Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic field. Phys. Rev. Lett. 36: 717-720ADSCrossRefGoogle Scholar
  42. 42.
    Emma, P., R. Carr and H.-D. Nuhn. 1999. Beam-based alignment for the LCLS FEL Undulator. Nucl. Instr. Meth. A 429: 407-413ADSCrossRefGoogle Scholar
  43. 43.
    Emma, P. et al. 2009. First Lasing of the LCLS X-Ray FEL at 1.5 Å. Proc. of the 2009 Part. Acc. Conf., Vancouver, pp. 3115-3119Google Scholar
  44. 44.
    Emma, P. et al. 2010. First lasing and operation of an Ångstrom-wavelength free-electron laser. Nature Photonics 176: 1-7Google Scholar
  45. 45.
    Faatz, B. et al. 2009. Flash Status and Upgrade. Proc. of the 2009 Free-electron Laser Conf., Liverpool, pp. 459-462Google Scholar
  46. 46.
    Fawley, W.M. 2001. Ginger FEL simulation code. LBNL Technical Report No. 49625Google Scholar
  47. 47.
    Fawley, W.M., Z. Huang, K.-J. Kim and N. Vinokurov. 2002. Tapered undulator for SASE FELs. Nucl. Instr. Meth. A 483: 537-541ADSCrossRefGoogle Scholar
  48. 48.
    Feldhaus, J. et al. 1997. Possible application of X-Ray optical elements for reducing the spectral bandwith of an X-Ray SASE FEL. Opt. Commun. 140: 341-352ADSCrossRefGoogle Scholar
  49. 49.
    Ferrario, M. et al. 2000. HOMDYN study for the LCLS rf photo-injector. in The Physics of High Brightness Beams, World Scientific Publisher, pp. 534-546Google Scholar
  50. 50.
    Fraser, J.S. and R.L. Sheffield. 1987. High-brightness injectors for RF-driven free-electron lasers. IEEE J. Quantum Electron. QE-23: 1489-1496ADSCrossRefGoogle Scholar
  51. 51.
    Fraser, J.S., R.L. Sheffield and E.R. Gray. 1986. A new high brightness electron injector for free electron lasers driven by RF Linacs. Nucl. Instr. Meth. A 250: 71-76ADSCrossRefGoogle Scholar
  52. 52.
    Galayda, J. 2003. Private communicationGoogle Scholar
  53. 53.
    Gallardo, J. 1990. Proceedings of the Workshop Prospects for a 1 Å Free-electron Laser, Sag Harbor, N.Y. Brookhaven National Laboratory Rep. 52273Google Scholar
  54. 54.
    Gea-Banacloche, J., G.T. Moore and M. Scully. 1984. Prospects for an X-ray free-electron laser. Proc. SPIE 453: 393-401ADSCrossRefGoogle Scholar
  55. 55.
    Gluskin, E. et al. 2001. Optimization of the design for the LCLS undulator line. Nucl. Instr. Meth. A 475: 323-327ADSCrossRefGoogle Scholar
  56. 56.
    Gopal, S. and J. Stohr (Eds.) 2003. LCLS The first experiments SLAC report R-611Google Scholar
  57. 57.
    Gover, A. and P. Sprangle. 1981. A Unified Theory of Magnetic-Bremsstrahlung, Electrostatic Bremsstrahlung, Compton-Raman Scattering and Cerenkov-Smith Purcell Free Electron Laser. IEEE J. Quantum Electron. QE-17 : 1196-1215Google Scholar
  58. 58.
    Hartemann, S.C. et al. 1994. Initial Measurments on the UCLA RF Photoinjector. Nucl. Instr. Meth. A 340: 219-230ADSCrossRefGoogle Scholar
  59. 59.
    Heifets, S., G. Stupakov and S. Krinsky. 2002. Coherent synchrotron radiation instability in a bunch compressor. Phys. Rev. ST Accel. Beams 5: 064401ADSCrossRefGoogle Scholar
  60. 60.
    Hogan, M. et al. 1998a. Measurements of High Gain and Intensity Fluctuations in a Self-amplified, Spontaneous-Emission Free-electron Laser. Phys. Rev. Lett. 80: 289-292ADSCrossRefGoogle Scholar
  61. 61.
    Hogan, M. et al. 1998b. Measurements of gain larger than 105 at 12 μm in a self-amplified spontaneous-emission free-electron laser. Phys. Rev. Lett. 81: 4867-4870ADSCrossRefGoogle Scholar
  62. 62.
    Huang, Z. and K.-J. Kim. 2000. Three-dimensional analysis of harmonic generation in high-gain free-electron lasers. Phys. Rev. E 62: 7295-7308ADSCrossRefGoogle Scholar
  63. 63.
    Huang, Z. and K.-J. Kim. 2002. Formulas for coherent synchrotron radiation microbunching in a bunch compressor chicane. Phys. Rev. ST Accel. Beams 5: 074401ADSCrossRefGoogle Scholar
  64. 64.
    Huang, Z. et al. 2004. Suppression of microbunching instability in the linac coherent light source. Phys. Rev. ST Accel. Beams 7: 074401ADSCrossRefGoogle Scholar
  65. 65.
    Huang, Z. et al. 2010. Measurements of the linac coherent light source laser heater and its impact on the X-ray free-electron laser performance. Phys. Rev. ST Accel. Beams 13: 020703ADSCrossRefGoogle Scholar
  66. 66.
    Jacobsen, C. and J. Kirz. 1998. X-ray microscopy with synchrotron radiation. Nat. Struct. Biol. Suppl. 5: 650-653CrossRefGoogle Scholar
  67. 67.
    Jerby, E. and A. Gover. 1985. Investigation of the gain regimes and gain parameters of the free electron laser dispersion equation. IEEE J. Quantum Electron. QE-21: 1041-1058ADSCrossRefGoogle Scholar
  68. 68.
    Katsouleas, T.C. et al. 2009. Scientific Assessment of high Power Free-electron Laser Technology, The National Academies Press, Washington D.C.Google Scholar
  69. 69.
    Kim, K.-J. 1986a. An analysis of self-amplified spontaneous emission. Nucl. Instr. Meth. A 250: 396-403ADSCrossRefGoogle Scholar
  70. 70.
    Kim, K.-J. 1986b. Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission in free-electron lasers. Phys. Rev. Lett. 57: 1871-1874ADSCrossRefGoogle Scholar
  71. 71.
    Kim, K.-J. 1990. Note on RF Photo-Cathode Gun, in Proc. of a Workshop Prospects for a 1 Å Free-electron Laser, Sag Harbor, N.Y., Brookhaven National Laboratory Rep. 52273 122-135Google Scholar
  72. 72.
    Kirkpatrick, D.A., G. Bekefi, A.C. Dirienzo, H.P. Freund and A.K. Ganguly. 1989. A high power, 600 m wavelength free electron laser. Nucl. Instr. Meth. A 285: 43-46ADSCrossRefGoogle Scholar
  73. 73.
    Kondradenko, A.M. and E.L. Saldin. 1980. Generation of coherent radiation by a relativistic electron beam in an undulator. Part. Accel. 10: 207-216Google Scholar
  74. 74.
    Krinsky, S. and L.H. Yu. 1987. Output Power in guided modes for amplified Spontaneous Emission in a Single Pass Free-electron Laser. Phys. Rev. A 35: 3406-3423ADSCrossRefGoogle Scholar
  75. 75.
    Kroll, N.M. and W.A. McMullin. 1978. Stimulated Emission from relativistic electrons passing through a spatially periodic transverse magnetic field. Phys. Rev. A 17: 300-308ADSCrossRefGoogle Scholar
  76. 76.
    Kroll, N.M., P. Morton and M.N. Rosenbluth. 1981. Free-electron lasers with variable parameter Wigglers. IEEE J. Quantum Elec. QE-17: 1436-1468ADSCrossRefGoogle Scholar
  77. 77.
    LCLS. 2002. LCLS Conceptual Design Report, Stanford Linear Accelerator Center, SLAC-R-593,
  78. 78.
    Lefevre, A.K., J. Gardelle, G. Marchese, J.L. Rullier and J.T. Donohue. 1999. Self-amplified spontaneous emission and bunching at 3 GHz in a microwave free-electron laser. Phys. Rev. Lett. 82: 323-326ADSCrossRefGoogle Scholar
  79. 79.
    Leone, S. et al. 1999. Report of the DOE Basic Energy Sciences Advisory Committee Panel on Novel Coherent Light Sources.
  80. 80.
    Levy, D.H. et al. 1994. Free Electron Lasers and Other Advanced Sources of Light : Scientific Research Opportunities. National Research Council, National Academies Press,
  81. 81.
    Lindberg, R.R. et al. 2009. Simulation Studies of the X-ray Free-electron Laser Oscillator. Proc. of the 2009 FEL Conf., Liverpool, pp. 587-590Google Scholar
  82. 82.
    Liouville, J. 1838. Sur la théorie de la variation des constantes arbitraries. J. Math. Pures Appl. 3: 342-349Google Scholar
  83. 83.
    Madey, J.M.J. 1971. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42: 1906-1913ADSCrossRefGoogle Scholar
  84. 84.
    McDonald, K.T. 1988. Design of the laser-driven RF electron gun for the BNL accelerator test facility. IEEE Trans. Electron Devices 35: 2052-2059ADSCrossRefGoogle Scholar
  85. 85.
    Milton, S.V. et al. 2000. Observation of self-amplified spontaneous emission and exponential growth at 530 nm. Phys. Rev. Lett. 85: 988-991ADSCrossRefGoogle Scholar
  86. 86.
    Milton, S.V. et al. 2001. Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser. Science 292: 2037-2040ADSCrossRefGoogle Scholar
  87. 87.
    Moore, G.T. 1984. high-gain small-signal modes of the free-electron laser. Opt. Commun. 52: 46-51ADSCrossRefGoogle Scholar
  88. 88.
    Moore, G.T. 1985. The high-gain regime of the free electron laser. Nucl. Instr. Meth. A 239: 19-28ADSCrossRefGoogle Scholar
  89. 89.
    Motz, H. 1951. Applications of the radiation from fast electron beams. J. Appl. Phys. 22: 527-535ADSzbMATHCrossRefGoogle Scholar
  90. 90.
    Motz, H. 1953. Experiments on radiation by fast electron beams. J. Appl. Phys. 24: 826-833ADSCrossRefGoogle Scholar
  91. 91.
    Murokh, A. et al. 2003. Properties of the ultrashort gain length, self-amplified spontaneous emission free-electron laser in the linear regime and saturation. Phys. Rev. E 67: 066501 (5p)ADSCrossRefGoogle Scholar
  92. 92.
    Murphy, J.B. and C. Pellegrini. 1985a. Generation of high-intensity coherent radiation in the soft-X-ray and vacuum-ultraviolet region. J. Opt. Soc. Amer. B 2: 259-264ADSCrossRefGoogle Scholar
  93. 93.
    Murphy, J.B. and C. Pellegrini. 1985b. Free electron lasers for the XUV spectral region. Nucl. Instr. Meth. A 237: 159-167ADSCrossRefGoogle Scholar
  94. 94.
    Murphy, J.B., C. Pellegrini and R. Bonifacio. 1985c. Collective instability of a free electron laser including space charge and harmonics. Opt. Commun. 53: 197-202ADSCrossRefGoogle Scholar
  95. 95.
    Murphy, J.B. and C. Pellegrini. 1990. Introduction to the physics of the free-electron laser, in : Laser Handbook, edited by W. Colson, C. Pellegrini and A. Renieri, Elsevier, Amsterdam, pp. 163-219Google Scholar
  96. 96.
    Neal, R.B. (Ed.). 1967. The Stanford Two Mile Accelerator, W.A. Benjamin Inc., New York. The book has been digitized and can be found at
  97. 97.
    Nguyen, D.C. et al. 1998. Self-amplified spontaneous emission driven by a high-brightness electron beam. Phys. Rev. Lett. 81: 810-813ADSCrossRefGoogle Scholar
  98. 98.
    Nuhn, H.-D. et al. 2009. LCLS undulator commissioning, alignment, performance. Proc. of the 2009 FEL Conf., Liverpool, pp. 714-721Google Scholar
  99. 99.
    Orzechowski, T. et al. 1985. Microwave radiation from a high gain free-electron laser amplifier. Phys. Rev. Lett. 54: 889-892ADSCrossRefGoogle Scholar
  100. 100.
    Palmer, R.V. 1972 Interaction of relativistic particles and free electromagnetic waves in the presence of a static helical magnet. J. Appl. Phys. 43: 3014-3023MathSciNetADSCrossRefGoogle Scholar
  101. 101.
    Palmer, D.T. 1998. The Next Generation Photoinjector, Stanford University Ph.D. thesis, SLAC Report 500Google Scholar
  102. 102.
    Palmer, D.T. et al. 1997. Emittance studies of the BNL/SLAC/UCLA 1.6 Cell Photocathode RF Gun. Proc. of the 1997 Particle Acc. Conf., Vancouver, pp. 2687-2689Google Scholar
  103. 103.
    Pantell, R.H., G. Soncini and H.E. Puthoff. 1968. Stimulated photon-electron scattering. IEEE J. Quantum Electron. QE-4: 905-907ADSCrossRefGoogle Scholar
  104. 104.
    Pellegrini, C. 1988. Progress Towards a Soft X-ray FEL. Nucl. Instr. Meth. A 272: 364-367ADSCrossRefGoogle Scholar
  105. 105.
    Pellegrini, C. 1990. SASE and Development of an X-Ray FEL. Proc. of the Workshop Prospects for a 1 Å Free-electron Laser, Sag Harbor, N.Y. Brookhaven National Laboratory Rep. 52273, pp. 3-12Google Scholar
  106. 106.
    Pellegrini, C. 1992. A 4 to 0.1 nm FEL Based on the SLAC Linac. Proc. Workshop IV Generation Light Sources, edited by M. Cornacchia and H. Winick, SSRL/SLAC Rep. 92/02, pp. 364-375Google Scholar
  107. 107.
    Pellegrini, C. 2001.The Free-Electron Laser Collective Instability and the Development of X-Ray FELs. Proc. of the 2001 Particle Accelerator Conference, IEEE, Chicago, pp. 295–299Google Scholar
  108. 108.
    Pellegrini, C. 2011. The Challenge of 4th Generation Light Sources. Proc. of the Int. Part. Acc. Conf., San Sebastian, pp. 3798-3802Google Scholar
  109. 109.
    Pellegrini, C. and S. Reiche. 2004. The development of X-ray free-electron lasers. IEEE J. Sel. Top. Quantum Electron. 10: 1393-1404CrossRefGoogle Scholar
  110. 110.
    Pellegrini, C. et al. 1993. A 2 to 4 nm High Power FEL on the SLAC Linac. Nucl. Instr. Meth. A 331: 223-227ADSCrossRefGoogle Scholar
  111. 111.
    Pellegrini, C. et al. 1994. The SLAC Soft X-Ray High Power FEL. Nucl. Instr. Meth. A 341: 326-330ADSCrossRefGoogle Scholar
  112. 112.
    Philips, R.M. 1960. The Ubitron, a high-power traveling-wave tube based on a periodic beam interaction in unloaded waveguide. IRE Trans. Electron Devices 7: 231-241ADSCrossRefGoogle Scholar
  113. 113.
    Pierce, J.R. 1962. History of the Microwave-Tube Art. Proc. of the IRE 50, pp. 978-984Google Scholar
  114. 114.
    Prazeres, R., J.M. Ortega, F. Glotin, D.A. Jaroszynski and O. Marcouillé. 1997. Observation of self-amplified spontataneous emission in a mid-infrared free-electron laser. Phys. Rev. Lett. 78: 2124-2127ADSCrossRefGoogle Scholar
  115. 115.
    Qiu, J., K. Batchelor, I. Ben-Zvi and X.-J. Wang. 1996. Demonstration of emittance compensation through the measurement of the Slice emittance at 10-ps electron Bunch. Phys. Rev. Lett. 76: 3723-3726ADSCrossRefGoogle Scholar
  116. 116.
    Ratner, D. et al. 2009. FEL gain length and taper measurements at LCLS. Proceedings of 2009 FEL Conf., Liverpool, pp. 221-224Google Scholar
  117. 117.
    Raubenheimer, T.O. 1995. Electron beam acceleration and compression for short wavelength FELs. Nucl. Instr. Meth. A 358: 40-43ADSCrossRefGoogle Scholar
  118. 118.
    Reiche, S. 1999. Genesis 1.3 A Fully 3D Time Dependent FEL Simulation Code. Nucl. Instr. Meth. A 429: 243-248ADSCrossRefGoogle Scholar
  119. 119.
    Reiche, S., P. Musumeci, C. Pellegrini and J. Rosenzweig. 2008. Developments of Ultra-Short Pulse Single Coherent Spike for SASE X-Ray FELs. Nucl. Instr. Meth. A 593: 45-48ADSCrossRefGoogle Scholar
  120. 120.
    Reiche, S., C. Pellegrini, J. Rosenzweig, P. Emma and P. Krejcik. 2002. Start-to-end simulation for the LCLS X-ray FEL. Nucl. Instr. Meth. A 483: 70-74ADSCrossRefGoogle Scholar
  121. 121.
    Robinson, K.W. 1985. Ultra Short Wave Generation. Nucl. Instr. Meth. A 239: 111-118ADSCrossRefGoogle Scholar
  122. 122.
    Roentgen, W.C. 1895. Über eine neue Art von Strahlen. Sitzungsberichtes der Würzburger Physik-medic GesellschaftGoogle Scholar
  123. 123.
    Rosenzweig, J. et al. 2008. Generation of Ultra-short High Brightness Electron Beams for Single Spike SASE FEL Operation. Nucl. Instr. Meth. A 593: 39-44ADSCrossRefGoogle Scholar
  124. 124.
    Rossbach, J. and the TESLA FEL Study Group. 1996. A VUV Free Electron Laser at the TESLA Test Facility at DESY. Nucl. Instr. Meth. A 375: 269-273ADSCrossRefGoogle Scholar
  125. 125.
    Saldin, E.L., E.A. Schneidmiller and M.V. Yurkov. 1998. Statistical Properties of the Radiation from SASE-FEL Operating in the Linear Regime. Nucl. Instr. Meth. A 407: 291-295CrossRefGoogle Scholar
  126. 126.
    Saldin, E.L., E.A. Schneidermiller and M.V. Yurkov. 1999. Numerical simulations of the UCLA/LANL/RRCKI/SLAC experiment on a High Gain SASE FEL. Nucl. Instr. Meth. A 429: 197-201ADSCrossRefGoogle Scholar
  127. 127.
    Saldin, E., E. Schneidmiller and M. Yurkov. 2002. Klystron instability of a relativistic electron beam in a bunch compressor. Nucl. Instr. Meth. A 490: 1-8ADSCrossRefGoogle Scholar
  128. 128.
    Saldin, E., E. Schneidmiller and M. Yurkov. 2003. Longitudinal Space Charge Driven Microbunching Instability in TTF2 linac. Report TESLA-FEL-2003-02 Rep., DESY, pp. 1-13Google Scholar
  129. 129.
    Scharlemann, E.T., A.M. Sessler and J.S. Wurtele. 1985. Optical guiding in a free-electron laser. Phys. Rev. Lett. 54: 1925-1928ADSCrossRefGoogle Scholar
  130. 130.
    Schmerge, J.F. et al. 1999. Photocathode rf gun emittance measurements using variable length laser pulses. Workshop on Free-Electron Laser Challenges II, Harold E. Bennett; David H. Dowell (Eds.), SPIE Conf. Proc. 3614 : 22-32Google Scholar
  131. 131.
    Schneider, J.R. 2010. Photon Science at Accelerator-based Light Sources. Rev. Accel. Sci. Tech. 3: 13-37CrossRefGoogle Scholar
  132. 132.
    Seeman, J. et al. 1991a. Summary of Emttance control in the SLC Linac. Proc. of 1991 U.S. Particle Accelerator Conf., pp. 2064-2067Google Scholar
  133. 133.
    Seeman, J. et al. 1991b. Multibunch energy and spectrum control in the SLC high energy Linac. Proc. of 1991 U.S. Particle Accelerator Conf., pp. 3210-3213Google Scholar
  134. 134.
    Seibert, M.M. et al. 2011. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470: 78-82ADSCrossRefGoogle Scholar
  135. 135.
    Sprangle, P. and R.A. Smith. 1980. Theory of free-electron lasers. Phys. Rev. A 21: 293-301ADSCrossRefGoogle Scholar
  136. 136.
    Sprangle, P., C.M. Tang and C.W. Roberson. 1985. Collective effects in the free electron Laser. Nucl. Instr. Meth. A 239: 1-18ADSCrossRefGoogle Scholar
  137. 137.
    Stupakov, G. 2003. Theory and observations of microbunching instability in electron machines. Proc. of the 2003 Particle Acc. Conf., Portland, Oregon, pp. 102-106Google Scholar
  138. 138.
    Tanaka, H. et al. 2011. SACLA Project-Status of beam commissioning. Proc. of 2011 FEL Conf., ShanghaiGoogle Scholar
  139. 139.
    TESLA. 1995. A VUV free electron laser at the TESLA test facility at DESY. Conceptual Design Report, DESY Print, TESLA-FEL 95-03Google Scholar
  140. 140.
    Travish, G. et al. 1995. Parametric Studies of an X-ray FEL. Nucl. Instr. Meth. A 358: 60-63ADSCrossRefGoogle Scholar
  141. 141.
    Tremaine, A. et al. 1998. Observation of self-amplified spontaneous-emission-induced electron-beam microbunching using coherent transition radiation. Phys. Rev. Lett. 81: 5816-5819ADSCrossRefGoogle Scholar
  142. 142.
    Tremaine, A. et al. 2001. Saturation measurement of a visible SASE FEL. Proc. of the 2001 Particle Accelerator Conf., Chicago, pp. 2760-2762Google Scholar
  143. 143.
    Tremaine, A. et al. 2002a. experimental characterization of nonlinear harmonic radiation from a visible self-amplified spontaneous emission free-electron laser at saturation. Phys. Rev. Lett. 88: 204801ADSCrossRefGoogle Scholar
  144. 144.
    Tremaine, A. et al. 2002b. Fundamental and harmonic microbunching in a high-gain self-amplified spontaneous-emission free-electron laser. Phys. Rev. E 66: 03650341CrossRefGoogle Scholar
  145. 145.
    Varfolomee, A.A. et al. 1995. Development of focusing undulators on the basis of Side Magnet Arrays. Nucl. Instr. Meth. A 359: 85-88ADSCrossRefGoogle Scholar
  146. 146.
    Varian, R.H. and S.F. Varian. 1939 A High frequency oscillator and amplifier. J. Appl. Phys. 10: 321-327ADSCrossRefGoogle Scholar
  147. 147.
    Vasserman, I. et al. 2004. LCLS undulator design development. Proc. of the 2004 FEL Conf., pp. 367-370Google Scholar
  148. 148.
    Vinko, S.M. et al. 2011. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature 482: 59-62ADSCrossRefGoogle Scholar
  149. 149.
    Walker, R.P. 2008. Considerations for a New Light Source for the UK. Proc. of 2008 FEL Conf., Gyeongju, pp. 160-162Google Scholar
  150. 150.
    Wang, J.-M. and L.-H. Yu. 1986. A transient analysis of a bunched beam free electron Laser. Nucl. Instr. Meth. A 250: 484-489ADSCrossRefGoogle Scholar
  151. 151.
    Weizsäcker, C.F. 1934. Ausstrahlung bei Stössen sehr schneller Elektronen. Z. Phys. 88: 612-625ADSCrossRefGoogle Scholar
  152. 152.
    Williams, E.J. 1935 Correlation of certain collision problems with radiation theory. Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 13 Google Scholar
  153. 153.
    Winick, H. et al. 1994. Short wavelength FELs using the SLAC Linac. Nucl. Instr. Meth. A 347: 199-205ADSCrossRefGoogle Scholar
  154. 154.
    Young, L. et al. 2010. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466: 46-52ADSCrossRefGoogle Scholar
  155. 155.
    Yu, L.H. 1991. Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 44: 5178-5193ADSCrossRefGoogle Scholar
  156. 156.
    Yu, L.-H., S. Krinsky and R. Gluckstern. 1990. Calculation of Universal Scaling for Free-electron Laser Gain. Phys. Rev. Lett. 64: 3011-3014ADSCrossRefGoogle Scholar
  157. 157.
    Yu, L.-H. et al. 2000a. First lasing of a high-gain harmonic generation free-electron laser experiment. Nucl. Instr. Meth. A 445: 301-306ADSCrossRefGoogle Scholar
  158. 158.
    Yu, L.-H. et al. 2000b. High-Gain Harmonic-Generation Free-electron Laser. Science 289: 932-934ADSCrossRefGoogle Scholar
  159. 159.
    Yu, L.H. et al. 2003. First Ultraviolet High-Gain Harmonic-Generation Free-Electron Laser. Phys. Rev. Lett. 91: 074801(4p)ADSCrossRefGoogle Scholar
  160. 160.
    Zinth, W., A. Laubereau and W. Kaiser. 2011 The long journey to the laser and its rapid development after 1960. Eur. Phys. J. H 36: 153-181CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.University of California at Los AngelesLos AngelesUSA
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations