The European Physical Journal H

, Volume 36, Issue 4, pp 601–632 | Cite as

History of stochastic beam cooling and its application in many different projects

  • F. CaspersEmail author
  • D. Möhl
Part of the following topical collections:
  1. CERN’s accelerators, experiments and international integration 1959 – 2009


This paper gives an overview of the evolution of stochastic beam cooling from the very beginning (in 1968) until the present-day (2011). The early history, the main achievements and the growing number of the worldwide applications are outlined.


Electron Cool Momentum Spread Antiproton Beam High Energy Accelerator Antiproton Decelerator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.T. Cole, F.E. Mills, Increasing phase space density of high energy particle beams, Ann. Rev. Nucl. Part. Sci. 31, 295 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    D. Möhl, A. Sessler, Beam cooling : principles and achievements, NIM A 532, 1 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    J. Marriner, Stochastic cooling overview, NIM A 532, 11 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    D. Möhl, Beam cooling, CERN-2005-4 (yellow report) CERN Accelerator School, Loutraki, 2000, p. 224sGoogle Scholar
  5. 5.
    Proc. Workshop on Crystalline beams and related issues, Erice, 1995, edited by D.M. Maletic, A.G. Ruggiero (World Scientific Publishing Co., 1996) Google Scholar
  6. 6.
    F. Caspers, Techniques of Stochastic Cooling, Proc. Workshop on Beam Cooling, Bad Honnef 2001, FZ Jülich Report, 2001 Google Scholar
  7. 7.
    D. Möhl, The status of stochastic cooling, NIM A 391, 164 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    R. Giannini, P. Lefevre, D. Möhl, SuperLEAR conceptual machine design, Nucl. Phys. A 558, 519 (1993) ADSCrossRefGoogle Scholar
  9. 9.
    S. Chattopadhyay, Some fundamental aspects of fluctuations and coherence in charged particle beams in storage rings, CERN-84-11 (yellow report), 1984Google Scholar
  10. 10.
    S. Chattopadhyay, Stochastic cooling of bunched beams from fluctuation and kinetic theory, Lawrence Berkeley Lab. Report, LBL-14826, 1982Google Scholar
  11. 11.
    H. Herr, D. Möhl, Bunched beam stochastic cooling, Proc. Workshop on Cooling of High Energy Beams (Madison, USA, 1978), Preprint CERN/PS-DL-Note 79-3Google Scholar
  12. 12.
    A.A. Mikhailichenko, M.S. Zolotorev, Optical stochastic cooling, Phys. Rev. Lett. 71, 4146 (1993) ADSCrossRefGoogle Scholar
  13. 13.
    M.S. Zolotorev, A.A. Zholents, Transit-time method of optical stochastic cooling, Phys. Rev. E 50, 3087 (1994) ADSCrossRefGoogle Scholar
  14. 14.
    M.Q. Barton, J.G. Cottingham, A. Tranis, Damping of a resistive wall beam instability in the Cosmotron, Rev. Sci. Instrum. 36, 624 (1964)ADSCrossRefGoogle Scholar
  15. 15.
    C.H. Pruett, R.A. Otte, F.E. Mills, Diagnostic and control of a coherent instability in the MURA 50 MeV electron accelerator, Proc. V International Conference on High Energy Accelerators (1965), p. 343Google Scholar
  16. 16.
    J.H. Martin, R.A. Winge, R. Hilden, F.E. Mills, Damping of the coherent vertical beam instability in the Argonne ZGS, in : Proc. V International Conference on High Energy Accelerators (1965), p. 347Google Scholar
  17. 17.
    E.C. Raka, Damping coherent oscillations in the AGS, IEEE Particle Acc. Conf. (1967), p. 1091Google Scholar
  18. 18.
    S. van der Meer, Stochastic damping of betatron oscillations, CERN ISR-PO 72/31, 1972Google Scholar
  19. 19.
    J. Borer et al., Non-distructive diagnostics of coasting beams with Schottky noise, Proc. Intenat. Conf. on high Energy Acc. Stanford (1974), p. 53Google Scholar
  20. 20.
    W. Schottky, Über spontane Schwankungserscheinungen in verschiedenen Elektrizitätshalbleitern, Ann. Phys. 57, 541 (1918)CrossRefGoogle Scholar
  21. 21.
    F. Mills, A.M. Sessler, Liouvilles theorem for a continous medium, Midwestern research association report MURA 433, 1958 Google Scholar
  22. 22.
    W. Schnell, About the feasibility of stochastic damping in the ISR, CERN/ISR/RF/72-46Google Scholar
  23. 23.
    R.B. Palmer, Stoichastic Cooling, Report, BNL 18395, 1973Google Scholar
  24. 24.
    H.G. Hereward, Statistical phenomena : theory, Proc. of the first course of the internat. school of particle accelerators, CERN yellow report 77-13, p. 281Google Scholar
  25. 25.
    P. Bramham et al., Stochastic cooling of a stored proton beam, NIM 125, 201 (1975) Google Scholar
  26. 26.
    L. Thorndahl, Stochastic cooling of momentum spread and betatron oscillations for low intensity stacks, CERN/ISR-RF 75-55 (1975)Google Scholar
  27. 27.
    D. Möhl, P. Strolin, L. Thorndahl, Stochastic cooling of antiprotons for ISR physics, CERN/EP report 76-05, 1976Google Scholar
  28. 28.
    C. Rubbia, P. McIntyre, Producing massive neutral intermediate vector bosons with existing accelerators, Proc. Int. Neutrino Conf., Aachen, 1976 (Vieweg Verlag, Braunschweig, 1977), p. 683Google Scholar
  29. 29.
    C. Pellegrini, A.M. Sessler, The Developpment of colliders (American Institute of Physics, New York, 1995) Google Scholar
  30. 30.
    G.I. Budker, An effective method of damping particle oscillations in proton and antiproton storage rings, Udc. 621.384. 60; Translated from Atomnaya Energiya 22, 346 (1967)Google Scholar
  31. 31.
    G. Carron, L. Thorndahl, Stochastic cooling of momentum spread with filter techniques, CERN/ISR-RF/78-12 and ISR-RF/Note LT/psGoogle Scholar
  32. 32.
    G. Carron et al., Stochastic cooling tests in ICE, Phys. Lett. B 77, 353 (1978)ADSCrossRefGoogle Scholar
  33. 33.
    L.J. Laslett, Evolution of the amplitude distribution function for a beam subjected to stochastic cooling, Lawrence Berkeley Laboratory report LBL-6459, 1977 also published in Proc. Internat. Conf. on High Energy Accelerators (Serpukhov, 1977)Google Scholar
  34. 34.
    S. Ichimaru, Basic principles of plasma physics (W.A. Benjamin Inc., London, 1973)Google Scholar
  35. 35.
    L. Thorndahl et al., Diffusion in momentum caused by filtered noise, internal report ISR-RF-TH/SPS Machine Perfomance report, 19. August 1977Google Scholar
  36. 36.
    F. Sacherer, Stochastic cooling theory, CERN/ISR-TH 78-11Google Scholar
  37. 37.
    S. van der Meer, Stochastic stacking in the Antiproton Accumulator, CERN/PS-AA 78-22Google Scholar
  38. 38.
    J. Bisognano, Kinetic equations for longituidinal stochastic cooling, Proc. 11th Int. Conf. on High Energy Accelerators (Geneva, 1980), p. 772Google Scholar
  39. 39.
    G. Lambertson et al., Stochastic cooling of 200 MeV protons, Proc. 11th Int. Conf. on High Energy Accelerators (Geneva, 1980), p. 794Google Scholar
  40. 40.
    E.N. Demet’ev et al., Experimental study of stochastic cooling of protons in NAP-M, Novosibirsk preprint 81-57 [translated at CERN as internal report CERN/PS-AA 82-3 (1982)]Google Scholar
  41. 41.
    D. Möhl, Stochastic cooling, CAS Rhodes 1993, CERN yellow report 95-06, Vol. 2, p. 587Google Scholar
  42. 42.
    Design study of a proton antiproton colliding beam facility, CERN/PS-AA 78-3, 1978Google Scholar
  43. 43.
    Design Study of an antiproton collector for the antiproton accumulator, edited by E.J.N. Wilson, CERN yellow report 83-10Google Scholar
  44. 44.
    L. Faltin, Slot-type pick-up and kicker for stochastic beam cooling, NIM 148, 449 (1987) Google Scholar
  45. 45.
    S. Maury, H. Koziol, Parameter list for the antiproton accumulator complex (AAC), CERN/PS 95-15 (AR/BD) Google Scholar
  46. 46.
    H. Koziol, D. Möhl, The CERN low-energy antiproton programme : The synchrotrons, Phys. Rep. 403, 271 (2004) ADSCrossRefGoogle Scholar
  47. 47.
    E. Peschardt, M. Studer, Stochastic cooling in the CERN ISR during \(p\bar p\) colliding beam physics. Proc. Pac 1983, IEEE Trans. Nucl. Sci. NS-30, 2584 (1983)Google Scholar
  48. 48.
    C. Baglin et al., Formation of the χ1 and the χ2 charmonium resonances in antiproton-proton annihilation and measurement of their masses and total widths; R704 Collaboration, Phys. Lett. B 172, 455 (1986) ADSCrossRefGoogle Scholar
  49. 49.
    Kilian et al., Deceleration of antiprotons for physics experiments at low energy : a low energy antiproton factory; CERN/PS/DL 77-19 and Proc. Internat. Conf. on High Energy Accelerators (Serpukov, 1977) Google Scholar
  50. 50.
    Design study of a facility for experiments with low energy antiprotons (LEAR), CERN-PS-DL-80-7Google Scholar
  51. 51.
    P. Lefèvre, D. Möhl, A low energy ion accumulation ring for LHC, CERN/PS 93-62(DI) 1993Google Scholar
  52. 52.
    C. Carli, Commissioning and performance of LEIR, Proc. COOL07 (Bad Kreuznach, Germany, 2007), p. 134 Google Scholar
  53. 53.
    S. Maury, D. Möhl, Simplified schemes for Antihydrogen production in traps, CERN-PS/AR Note 95-17, 1995Google Scholar
  54. 54.
    S. Maury et al., Design study of the antiproton decelerator AD, CERN PS 96-43(AR) 1996Google Scholar
  55. 55.
    P. Belochitskii, Report on operation of antiproton decelerator, COOL05, Galena USA, 2005, AIP Conf. Proc. 821, 48 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    R.S. Hayano et al., ASACUSA Status Report – ASACUSA progress during 2009 and plans for 2010, CERN-SPSC-2010-005, SPSC-SR-056Google Scholar
  57. 57.
    T. Eriksson et al., ELENA an updated cost and feasibility study, CERN-BE-2010-029Google Scholar
  58. 58.
    Design report Tevatron 1 project, fermilab-design-1983-01,
  59. 59.
    M. Church, J. Marriner, The Antiproton sources : design and operation, Ann. Rev. Nucl. Part. Sci. 43, 253 (1993)ADSCrossRefGoogle Scholar
  60. 60.
    F.E. Mills, Status of the Fermilab antiproton source, NIM A 271, 176 (1988) ADSCrossRefGoogle Scholar
  61. 61.
    Fermilab recycler ring technical design report,
  62. 62.
    R. Pasquinelli, Implementation of stochastic cooling hardware at Fermilabs Tevatron collider, JINST 6 T08002 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    S. Nagaitsev et al., Antiproton cooling at the Fermilab Recycler, COOL05, Galena USA 2005, AIP Conf. Proc., 821, p. 39Google Scholar
  64. 64.
    D. McGinnis, Theory and design of microwave planar electrodes for stochastic cooling of particle beams, Microw. Opt. Technol. Lett. 4, 439 (1991)CrossRefGoogle Scholar
  65. 65.
    D. McGinnis, Slotted waveguide slow-wave stochastic cooling arrays, 1999 PAC, IEEE Conference (New York USA, 1999), p. 1713Google Scholar
  66. 66.
    Y. Hoshiko, K1 superconducting communication transmission, Fifth International Cryogenics Engineering Conference, ICEC5 (Tokyo Japan, 1975), p. 282Google Scholar
  67. 67.
    R. Pasquinelli, Bulk Acoustic Wave (BAW) devices for stochastic cooling notch filters, IEEE Part. Accel. Conf. 3, 1395 (1991)CrossRefGoogle Scholar
  68. 68.
    R.J. Pasquinelli, Fiber optic links for instrumentation, accelerator instrumentation workshop, AIP Conf. Proc. 229, 180 (1990) ADSCrossRefGoogle Scholar
  69. 69.
    R.J. Pasquinelli, Superconducting notch filters for the Fermilab antiproton source, 12th Int. Conf. on High Energy Accelerators (1983), p. 584Google Scholar
  70. 70.
    R.J. Pasquinelli, Optical notch filters for Fermilab Debuncher betatron stochastic cooling, Proc. of 1989 PAC, Chicago USA, IEEE Part. Accel. Conf. (1989), Vol. 1, p. 694 Google Scholar
  71. 71.
    K. Seiya et al., Slip Stacking, CARE-HHH-ADP workshop BEAM07 Geneva, Switzerland, 2007Google Scholar
  72. 72.
    V. Lebedev, Improvements to the stacktail and debuncher momentum cooling systems (COOL 09, Lanzhou China, 2009) Google Scholar
  73. 73.
    Y. Hirao et al., Test accumulation ring for the NUMATRON project, PAC 79, IEEE Trans. NS-26, 3730Google Scholar
  74. 74.
    T. Katayama et al., Beam stacking experiments at TARN; PAC 83, IEEE Trans. NS-30, 2080 (1983) ADSGoogle Scholar
  75. 75.
    N. Tokuda et al., Stochastic cooling of 7 MeV protons at TARN, 12th High Energy Accelerator Conference (FNAL, 1983), p. 386Google Scholar
  76. 76.
    T. Katayama et al., Beam accumulation and momentum cooling at TARN, 10th Int. Conf. on Cyclotrons and their Applications (Michigan, 1984), p. 595Google Scholar
  77. 77.
    T. Katayama, N. Tokuda, Fokker-Planck approach to stochastic momentum cooling with a notch filter, Particle Accelerators 21, 99 (1987)Google Scholar
  78. 78.
    B. Franzke, The heavy ion storage and cooler ring project ESR at GSI, NIM B 24, 18 (1987)ADSCrossRefGoogle Scholar
  79. 79.
    F. Nolden et al. Stochastic precooling of heavy fragments in the ESR, EPAC 88, p. 579Google Scholar
  80. 80.
    F. Nolden et al. First experiments on stochastic cooling of heavy ion beams at the ESR, EPAC 98, p. 1052 Google Scholar
  81. 81.
    F. Nolden et al., Fast stochastic cooling of heavy ions at the ESR storage ring, EPAC 2000, p. 1262Google Scholar
  82. 82.
    F. Nolden et al., Stochastic cooling at the ESR, NIM A 441, 219 (2000) ADSCrossRefGoogle Scholar
  83. 83.
    B. Franzke et al., Performance of Schottky mass spectrometry at the ESR, EPAC 98, p. 256Google Scholar
  84. 84.
  85. 85.
    R. Maier, Cooler synchrotron COSY performance and perspectives, NIM A 390, 1 (1997)ADSCrossRefGoogle Scholar
  86. 86.
    K. Bongardt et al., Theoretical analysis of transverse stochastic cooling in the cooler synchrotron COSY, EPAC 90, p. 1583 Google Scholar
  87. 87.
    W. Scobel et al., Status of the EDDA experiment at COSY, Phys. SCR. 48, 92 (1993)ADSCrossRefGoogle Scholar
  88. 88.
    The EDDA experiment,
  89. 89.
    P. Klaja et al., COSY-11 : an experimental facility for studying meson production in free and quasi-free nucleon-nucleon collisions, AIP Conf. Proc. 796, 160 (2005) ADSCrossRefGoogle Scholar
  90. 90.
    H. Stockhorst et al., Stochastic cooling for the HESR at the FAIR facility, PAC 09, p. 1472Google Scholar
  91. 91.
    W. Kells, Filterless fast momentum cooling, 11th Internat. Conf. High-Energy Accelerators (Geneva, 1980), p. 777 Google Scholar
  92. 92.
    H. Stockhorst et al., Stochastic momentum cooling experiments with a barrier bucket cavity and internal targets at COSY-Jülich in preparation for HESR at FAIR, IPAC 10, p. 846Google Scholar
  93. 93.
    M. Harrison, T. Ludlam, S. Ozaki, RHIC project overview, NIM A 499, 235 (2003) ADSCrossRefGoogle Scholar
  94. 94.
    M. Harrison, S. Peggs, T. Roser, The RHIC accelerator, Ann. Rev. Nucl. Part. Sci. 52, 425 (2002)ADSCrossRefGoogle Scholar
  95. 95.
    S. van der Meer, Stochastic cooling in RHIC, RHIC-AP-9, 1984Google Scholar
  96. 96.
    D. Boussard et al., Workshop on the RHIC performance, BNL-41604, 1988Google Scholar
  97. 97.
    J. Wei, A.G. Ruggiero, Longitudinal stochastic cooling in RHIC (BNL/AD/RHIC-71, 1990)Google Scholar
  98. 98.
    J. Wei, Stochastic cooling and intra-beam scattering in RHIC, Workshop on Beam Cooling, Montreux, 1993, CERN 94-03 (yellow report), p. 137Google Scholar
  99. 99.
    M. Blaskiewicz, J.M. Brennan, Buched beam stochastic cooling at RHIC, Proc. Internat. Workshop on Beam Cooling and Related Topics, COOL07, 2008, p. 25Google Scholar
  100. 100.
    M. Blaskiewicz, J. Wei BNL, A. Luque, H. Schamel, Longitudinal solitons in bunched beams, Phys. Rev. ST Accel. Beams 7, 044402 (2004) ADSCrossRefGoogle Scholar
  101. 101.
    M. Blaskiewicz, J.M. Brennan, J. Wei, Stochastic cooling studies in RHIC, II, Proc. of EPAC 04 (2004), p. 2861 Google Scholar
  102. 102.
    J. Wei, M. Blaskiewicz, J.M. Brennan, Stochastic cooling power requirements, Proc. EPAC 04 (2004), p. 941 Google Scholar
  103. 103.
    J.M. Brennan, M. Blaskiewicz, Stochastic cooling in RHIC, Proc. of PAC 09 (2009), p. 1910Google Scholar
  104. 104.
    K. Mernick, M. Blaskiewicz, J.M. Brennan, B. Johnson, F. Severino, Microwave link phase compensation for longitudinal stochastic cooling in RHIC, Proc. BIW 10 (2010)Google Scholar
  105. 105.
    M. Blaskiewicz, J.M. Brennan, K. Mernick, Three-dimensional cooling in the Relativistic Heavy Ion Collider, Phys. Rev. Lett. 105, 09480 (2010) CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.CERN23 GenevaSwitzerland

Personalised recommendations