The European Physical Journal H

, Volume 37, Issue 5, pp 709–743 | Cite as

Rights and wrongs of the temporal solar radius variability

  • J.P. RozelotEmail author
  • C. Damiani


From time immemorial men have strived to measure the size of celestial bodies. Among them, the diameter of the Sun was a source of curiosity and study. Tackled by Greek astronomers from a geometric point of view, an estimate, although incorrect, has been first determined, not truly called into question for several centuries. One must wait up to the XVIIth century to get the first precise determinations made by the French school of astronomy. Gradually, as the techniques were more and more sophisticated, many other solar diameter measurements were carried out, notably in England, Germany, Italy and US. However, even with instruments at the cutting edge of progress, no absolute value of the solar diameter has been provided yet, even if the community has adopted a canonical radius of 959.″63, given in all ephemeris since the end of the XIXth century. One of the major difficulties is to define a correct solar diameter. Another issue is the possible temporal variability of the size of the Sun, as first advocated at the end of the XIXth century by the Italian school. Today, this question is just on the way to being solved in spite of considerable efforts developed on ground-based facilities or on board space experiments. We will here give a review of some of the most remarkable techniques used in the past, emphasising how incorrect measurements have driven new ideas, leading to develop new statements for the underlying physics. On such new grounds, it can be speculated that the roundness of the Sun is not perfect, but developing a thin “cantaloupe skin” in periods of higher activity, with departures from sphericity being inevitably bounded by a few kilometers (around 80 km or 10 to 15 mas).


Solar Activity Solar Cycle Solar Eclipse Solar Radius Michelson Doppler Imager 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen. 2000. Astrophysical Quantities, A.N. Cox (Ed.), 4th edn., SpringerGoogle Scholar
  2. 2.
    Ambronn, L. 1906. Remarks on Mr. C.L. Poor’s Papers on the figure of the Sun. Astrophys. J. 23: 343-344 ADSCrossRefGoogle Scholar
  3. 3.
    Ambronn, L. and A.C.W. Schur. 1905. Die Messungen des Sonnendurchmessers an dem Repsold’schen 6-zoelligen Heliometer der Sternwarte zu Goettinge ausgefuhrt. Astronomische Mittheilungen der Koeniglichen Sternwarte zu Goettingen; 7. T. : Druck der Dieterich’schen Univ.-Buchdruckerei (W. Fr., 126 p.)Google Scholar
  4. 4.
    Antia, H.M. and S. Basu. 2004. Temporal Variations in the Solar Radius. Proceedings of the SOHO 14–GONG 2004 Workshop (ESA SP–559), Helio- and Asteroseismology : Towards a Golden Future, edited by D. Danesy, New Haven, Connecticut, USA, p. 301Google Scholar
  5. 5.
    Antia, H.M., S. Basu, J. Pintar and B. Pohl. 2010. Solar cycle variation in solar-f mode frequencies and radius. Sol. Phys. 192: 459-468 ADSCrossRefGoogle Scholar
  6. 6.
    Auwers, A. 1891. Der Sonnendurchmesser und der Venusdurchmesser nach den Beobachtungen an den Heliometern der deutschen Venus-Expeditionen. Astron. Nach. 128: 361-376 ADSCrossRefGoogle Scholar
  7. 7.
    Badache-Damiani, C. and J.P. Rozelot. 2006. Solar apparent radius variability : a new statistical approach to astrolabe multi-site observations, Month. Not. R. Astron. Soc. 369: 83-88 ADSCrossRefGoogle Scholar
  8. 8.
    Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki and J.W. Harder. 2011. Solar irradiance variability : a six-year comparison between SORCE observations and the SATIRE model. Astron. Astrophys. 530: A71ADSCrossRefGoogle Scholar
  9. 9.
    Basu, D. 1998. Radius of the Sun in relation to solar activity. Sol. Phys. 183: 291-294 ADSCrossRefGoogle Scholar
  10. 10.
    Bois, E. and J.-F. Girard. 1999. Impact of the Quadrupole Moment of the Sun on the Dynamics of the Earth-Moon System. Cel. Mech. 73: 329-338 ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Brown, T.M. and J. Christensen-Dalsgaard. 1998. Accurate Determination of the Solar Photospheric Radius. Astrophys. J. Lett. 500: L195ADSCrossRefGoogle Scholar
  12. 12.
    Brown, T.M., D.F. Elmore, L. Lacey and H. Hull. 1982. Solar diameter monitor : an instrument to measure long-term changes. Appl. Opt. 21: 3588-3596 ADSCrossRefGoogle Scholar
  13. 13.
    Bush, R.I., M. Emilio and J.R. Kuhn. 2010. On the Constancy of the Solar Diameter. III. Astrophys. J. 716: 1381-1385 ADSCrossRefGoogle Scholar
  14. 14.
    Callebaut, D.K., V.I. Makarov and A. Tlatov. 2002. Gravitational energy, solar radius and solar cycle, in Proceedings of the Second Solar Cycle and Space Weather Euroconference,24–29 September 2001, Vico Equense, Italy, edited by H. Sawaya-Lacoste, ESA SP-477, pp. 209-212Google Scholar
  15. 15.
    Chapman, G.A., A.M. Cookson, J.J. Dobias and S.R. Walton. 1997. Variations in the Solar Radius during Solar Cycle 22. American Astronomical Society, 191st AAS Meeting, session 120.01. Bulletin of the American Astronomical Society 29: 1402ADSGoogle Scholar
  16. 16.
    Chapman, G.A., A.M. Cookson, J.J. Dobias and S.R. Walton. 1999. A Search For Variations in the Solar Radius. American Astronomical Society, 194th AAS Meeting, session 93.02.. Bulletin of the American Astronomical Society 31: 988ADSGoogle Scholar
  17. 17.
    Chapman, G.A., J.J. Dobias and S.R. Walton. 2008. On the variability of the apparent solar radius. Astrophys. J. 681: 1698-1702 ADSCrossRefGoogle Scholar
  18. 18.
    Chevalier, P.S. 1912. Note sur les diamètres polaire et équatorial du Soleil. Bulletin Astronomique, Série I 29: 473-475 ADSGoogle Scholar
  19. 19.
    Cimino, M. 1944. Un oscillazione ventiduennale nel diametro solare. Memoria presentata dall’Academico Pontificio Guiseppe Armellini nella Tornata il 12 agosto 1944. Commentationes VIII: 485-505Google Scholar
  20. 20.
    Cimino, M. 1946. Una conferma del ciclo solare ventiduennale dedotta delle oscillaziono dei diametri solari. Memoria presentata dall’Accademia dei Lincei il 18 aprile 1946, Roma (I) 1, 624-627Google Scholar
  21. 21.
    Costa, J.E.R., A.V.R. Silva, V.S. Makhmutov, E. Rolli, P. Kaufmann and A. Magun. 1999. Solar Radius Variations at 48 GHZ Correlated with Solar Irradiance. Astrophys. J. 520: L63-L66ADSCrossRefGoogle Scholar
  22. 22.
    Coulter, R.L., J.R. Kuhn and H. Lin. 1996. The precision solar photometric telescopes. Bull. Am. Astron. Soc. 28: 911ADSGoogle Scholar
  23. 23.
    Cullen, R.T. 1926. Diameters of the Sun observed at Greenwich, 1915-25. Mon. Not. Roy. Astron. Soc. 86: 344-349 ADSGoogle Scholar
  24. 24.
    Damé, L. et al. 2001. Picard, solar diameter, irradiance and climate, Euroconference on the Solar Cycle and Terrestrial Climate, September 25–29, 2000, Tenerife, Spain, ESA, SP-463, December 2000, pp. 223, 229Google Scholar
  25. 25.
    Damiani-Badache, C., J.P. Rozelot, K. Coughlin and N. Kilifarska. 2007. Influence of the UTLS region on the astrolabes solar signal measurement. Month. Not. R. Astron. 380: 609-614 ADSCrossRefGoogle Scholar
  26. 26.
    Damiani, C., J.P. Rozelot, S. Lefebvre, A. Kilcik and A.K. Kosovichev. 2010. A brief history of the solar oblateness. A review. J. Atmos. Sol-Terr. Phys. 73: 241-250 ADSCrossRefGoogle Scholar
  27. 27.
    Danylevsky, V.O. 1999. The solar diameter determination from data of the 1991 July 11 solar eclipse photoelectric observation. Contrib. Astron. Obs. Skalnate Pleso 28: 201-209 ADSGoogle Scholar
  28. 28.
    Débarbat, S. 1987. La qualité des observations de Picard, in Picard et les débuts de l’Astronomie de précision au XVII e siècle. CNRS edition Google Scholar
  29. 29.
    Delache, P., F. Laclare and H. Sadsaoud. 1985. Long period oscillations in solar diameter measurements. Nature 317: 416-418 ADSCrossRefGoogle Scholar
  30. 30.
    Delmas, C. 2003. Measurements of the Sun’s radius at Calern Observatory, in The Sun’s surface and subsurface, Lecture Notes in Physics, Vol. 599, edited by J.P. Rozelot. Springer (D), pp. 196-216Google Scholar
  31. 31.
    Dicke, R.H. 1974. The Oblateness of the Sun. Astrophys. J. Suppl. Series 27: 131-182 ADSCrossRefGoogle Scholar
  32. 32.
    Dunham, D.W., S. Sofia, A.D. Fiala, P.M. Muller and D. Herald. 1980. Observations of a probable change in the solar radius between 1715 and 1979. Science 210: 1243-1245 ADSCrossRefGoogle Scholar
  33. 33.
    Dunham, D.W., J.R. Thompson, D.R. Herald, R. Buechner, A.D. Fiala, W.H. Warren Jr., and H.E. Bates. 2005. SORCE Science Meeting September 14–16, Durango, Colorado. (
  34. 34.
    Dziembowski, W.A., P.R. Goode, A.G. Kosovichev and J. Schou. 2000. Signatures of the Rise of Cycle 23. Astrophys. J. 537: 1026-1038 ADSCrossRefGoogle Scholar
  35. 35.
    Eddy, J.A. and A.A. Boornazian. 1979. Secular Decrease in the Solar Diameter, 1863–1953. Bulletin of the American Astronomical Society 12: 437ADSGoogle Scholar
  36. 36.
    Egidi, A., B. Caccin, S. Sofia, W. Heaps, W. Hoegy and L. Twigg. 2006. High-Precision Measurements of the Solar Diameter and Oblateness by the Solar Disk Sextant (SDS) Experiment. Sol. Phys. 235: 407-418 ADSCrossRefGoogle Scholar
  37. 37.
    Emilio, M., J. Kuhn, R.I. Bush and P. Sherrer. 2000. On the constancy of the solar diameter. Astrophys. J. 543: 1007-1010 ADSCrossRefGoogle Scholar
  38. 38.
    Fazel, Z. 2007. Variabilité solaire : une approche globale tenant compte de l’hélioïde. Ph.D. Thesis. Nice University, p. 130Google Scholar
  39. 39.
    Fazel, Z., J.P. Rozelot, S. Lefebvre, A. Ajabshirizadeh and S. Pireaux. 2008. Solar gravitational energy and luminosity variations. New Astronomy 13: 65-72 ADSCrossRefGoogle Scholar
  40. 40.
    Fiala, A.D., D.W. Dunham, D.W. David and S. Sofia. 1994. Variation of the solar diameter from solar eclipse observations 1715–1991. Sol. Phys. 152: 97-104 ADSCrossRefGoogle Scholar
  41. 41.
    Fortini, G., M. Cimino, G. Tarantini and M.A. Giannuzzi. 1950. Area delle macchie solari durante il secondo semestre del 1948 e durante l’anno 1949 secondo i rilievi fotografici giornalieri dell’ Osservatorio Astronomico di Roma. Memorie della Società Astronomia Italiana, Vol. 21, pp. 297-301Google Scholar
  42. 42.
    Gething, P.J.D. 1955. Greenwich observations of the horizontal and vertical diameters of the Sun. Mon. Not. Roy. Astron. Soc. 115: 558-570 ADSGoogle Scholar
  43. 43.
    Giallanella, L. 1941. Le Variazioni del diametro solare nel sessanteno 1874–1937, secondo le osservazioni eseguite neel’osservatorio del Campidoglio. Memoria presentata dall’Academico Pontificio Guiseppe Armellini nella Tornata del 30 novembre 1941. Commentationes VI: 1139-1197Google Scholar
  44. 44.
    Giannuzi, M.A. 1953. Riduzione delle osservazioni dei diametro solari orizzontali (1851 al 1937). Memoria della Societa Astronomica Italiana, pp. 305-314Google Scholar
  45. 45.
    Giannuzi, M.A. 1955. Riduzione delle osservazioni dei diametro solari verticali (1851 al 1937). Memoria della Societa Astronomica Italiana, pp. 447-454Google Scholar
  46. 46.
    Gilliland, R.L. 1981. Solar radius variations over the past 265 years. Astrophys. J. 248: 1144-1155ADSCrossRefGoogle Scholar
  47. 47.
    Gonzalez-Hernandez, I., P. Scherrer and F. Hill. 2009. A new way to infer variations of the seismic solar radius. Astrophys. J. 691: L87-L90ADSCrossRefGoogle Scholar
  48. 48.
    Grillot, S. 1987. Picard observateur, in Picard et les débuts de l’Astronomie de précision au XVII e siècle. CNRS editionGoogle Scholar
  49. 49.
    Haberreiter, M., W. Schmutz and A.G. Kosovichev. 2008a. Solving the Discrepancy between the Seismic and Photospheric Solar Radius. Astrophys. J. 675: L53-L56ADSCrossRefGoogle Scholar
  50. 50.
    Haberreiter, M., W. Schmutz and W. Hubeny. 2008b. NLTE model calculations for the solar atmosphere with an iterative treatment of opacity distribution functions. Astron. Astrophys. 492: 833-840 ADSCrossRefGoogle Scholar
  51. 51.
    Hayn, F. 1924. Die Gestalt der Sonne. Astronomische Nachrichten 220: 113-126 ADSCrossRefGoogle Scholar
  52. 52.
    Hill, H.A. and R.T. Stebbins. 1975a. The intrinsic visual oblateness of the Sun, Astrophys. J. 200: 471-483 ADSCrossRefGoogle Scholar
  53. 53.
    Hill, H.A., R.T. Stebbins and J.R. Oleson. 1975b. The Finite Fourier Transform Definition of an edge of the solar disk. Astrophys. J. 200: 484-498 ADSCrossRefGoogle Scholar
  54. 54.
    Hudson, H. and J.P. Rozelot. 2010. History of solar oblateness.˜tohban/wiki/index.php/History_of_Solar_oblateness
  55. 55.
    Kepler, J. 1604. Ad Vitellionem Paralipomena, Quibus Astronomiae Pars Optica Traditur. Frankfurt, Chap. IXGoogle Scholar
  56. 56.
    Kilcik, A., C. Sigismondi and J.P. Rozelot. 2009. Solar radius determination from total solar eclipse observation on March 29 2006. Sol. Phys. 257, pp. 237-250Google Scholar
  57. 57.
    Kilic, H., O. Golbasi and F. Chollet. 2005. Measurements of the solar radius in Antalaya between 2001–2003. Sol. Phys. 229: 5-12 ADSCrossRefGoogle Scholar
  58. 58.
    Kovalevsky, J. 1995. Modern Astrometry, Lecture Notes in Physics. Springer Verlag edition, 358, p. 294 Google Scholar
  59. 59.
    Kuhn, J.R., R.I. Bush, M. Emilio and P.H. Scherrer. 2004. On the Constancy of the Solar Diameter. II. Astrophys. J. 613: 1241-1252 ADSCrossRefGoogle Scholar
  60. 60.
    Laclare, F. 1983. Astrolabe measurements of the solar diameter. Astron. Astrophys. 125: 200-203ADSGoogle Scholar
  61. 61.
    Laclare, F., C. Delmas, J.P. Coin and A. Irbah. 1996. Measurements and Variations of the Solar Diameter. Sol. Phys. 166 : 211-229Google Scholar
  62. 62.
    Laclare, F., C. Delmas and A. Irbah. 1999. Variations apparentes du diamètre solaire obervées à l’astrolabe solaire, 1975–1998. C. R. Acad. Sci. Paris 327 : II, 1107-1114Google Scholar
  63. 63.
    Lamy, A. 2010. PICARD, an innovative mission to study the Sun. CNES Magazine Suppl., 44, folio 05Google Scholar
  64. 64.
    Lefebvre, S., L. Bertello, R.K. Ulrich, J.E. Boyden and J.P. Rozelot. 2006. Solar radius measurements at Mount Wilson Observatory. Astrophys. J. 649: 444-451 ADSCrossRefGoogle Scholar
  65. 65.
    Lefebvre, S. and A.K. Kosovichev. 2005. Changes in the subsurface stratification of the Sun with the 11-year activity cycle. Astrophys. J. 633: L149-L152ADSCrossRefGoogle Scholar
  66. 66.
    Lefebvre, S., A. Kosovichev and J.P. Rozelot. 2007. Test of nonhomologous solar radius changes with the 11 year activity cycle. Astrophys. J. 658: L135-L138ADSCrossRefGoogle Scholar
  67. 67.
    Lefebvre, S. and J.P. Rozelot. 2003. Influence of the Sun Radius Variability on Irradiance Modelling, ISCS meeting, Tatranska Lomnica, ESA-SP 535, pp. 53-56Google Scholar
  68. 68.
    Lefebvre, S. and J.P. Rozelot. 2004. Solar latitudinal distortions : from theory to observations. Astron. Astrophys. 419: 1133-1140 ADSCrossRefGoogle Scholar
  69. 69.
    Leister, N.V. and P. Benevides-Soares. 1990. Variations du diamètre solaire. C. R. Acad. Sci. Paris 311: II, 399-404Google Scholar
  70. 70.
    Lejeune, A. 1947. La dioptre d’Archimède. Annales de la société scientifique de Bruxelles, Série I: 27-47Google Scholar
  71. 71.
    Le Monnier (de), P.C. 1741. Histoire Céleste ou Recueil des observations astronomiques faites par ordre du Roy. Briasson (Ed.), ParisGoogle Scholar
  72. 72.
    Leone, S. 1973. Solar semi-diameter measurements made in 1971 on the basis of a photographic method. Mem. Soc. Astron. Ital., Nuova Ser. 43: 779-787 ADSGoogle Scholar
  73. 73.
    Li, L.H., P. Ventura, S. Basu, S. Sofia and P. Demarque. 2005. 2-D Stellar Evolution Code Including Arbitrary Magnetic Fields. Astrophys. J. Suppl. S. 164: 215-254 ADSCrossRefGoogle Scholar
  74. 74.
    Linton, C.M. 2005. From exodus to Einstein, Cambridge University Press, p. 516Google Scholar
  75. 75.
    Livingston, W. and M. Penn. 2009. Are Sunspots Different During This Solar Minimum? Eos, Transactions American Geophysical Union 90: 257-258 ADSCrossRefGoogle Scholar
  76. 76.
    Maier, E., L. Twigg and S. Sofia. 1992. Preliminary results of a balloon flight of the solar disk sextant. Astrophys. J. 389: 447-452 ADSCrossRefGoogle Scholar
  77. 77.
    Mathews, P.M., T.A. Herring and B.A. Buffett. 2002. J. Geophys. Res. 107: B4, ETG 3-1CrossRefGoogle Scholar
  78. 78.
    Messier, C. 1766. Observations of the Eclipse of the Sun on the 16th of August 1765 made at Colombes (Paris). Philos. Trans. 56: 1-3 CrossRefGoogle Scholar
  79. 79.
    Meyermann, B. 1950. Zur Pulsation der Sonne. Astron. Nach. 279: 45-46 ADSCrossRefGoogle Scholar
  80. 80.
    Morand, F. et al. 2010. Mesures du rayon solaire avec l’instrument Doraysol (1996–2006) sur le site de Calern. C. R. Acad. Sci. Paris 9: 660-673 Google Scholar
  81. 81.
    Neckel, H. 1995. The solar radius derived from limb-darkening scans obtained in 1981 and from 1986 to 1990. Sol. Phys. 156: 7-16 ADSCrossRefGoogle Scholar
  82. 82.
    Noël, F. 2003. Solar astrometry at Santiago, in The Sun’s surface and subsurface, Lecture Notes In Physics, J.P. Rozelot (Ed.), Springer (D), Vol. 599, pp. 181-195Google Scholar
  83. 83.
    Noël, F. 2004. Solar cycle dependence of the apparent radius of the Sun. Astron. Astrophys. 413: 725-732 ADSCrossRefGoogle Scholar
  84. 84.
    Noël, F. 2005. On solar radius variations observed with astrolabes. Solar Phys. 232: 127-141 ADSCrossRefGoogle Scholar
  85. 85.
    O’Dell, C.R. and A. Van Helden. 1987. How accurate were seventeenth-century measurements of solar diameter? Nature 330 : 629-631Google Scholar
  86. 86.
    Pap, J., J.R. Kuhn, C. Fröhlich, R. Ulrich, A. Jones and J.P. Rozelot. 1998. Importance of monitoring solar global properties luminosity, radius and oscillations, ESA meeting “A crossroad for European Solar and Heliospheric Physics” held on 23–27 March 1998, Tenerife (Spain), ESA SP 417, pp. 267-271Google Scholar
  87. 87.
    Parkinson, J.H. 1983. New measurements of the solar diameter. Nature 304: 518-520 ADSCrossRefGoogle Scholar
  88. 88.
    Parkinson, J.H., L.V. Morrison and F.R. Stephenson. 1980. The constancy of the solar diameter over the past 250 years. Nature 288: 548-551 ADSCrossRefGoogle Scholar
  89. 89.
    Picard, J. 1669. Memoir read at the Royal Academy of Sciences in Paris on the 24th of October, 1668, in Archives de l’Académie des Sciences, tome 3, folio 156Google Scholar
  90. 90.
    Poor, C.L. 1905a. The figure of the Sun, Astrophys. J. 22: 103-114 ADSCrossRefGoogle Scholar
  91. 91.
    Poor, C.L. 1905b. The figure of the Sun II, Astrophys. J. 22: 305-317 ADSCrossRefGoogle Scholar
  92. 92.
    Ptolemy. 1948. Encyclopedia Britannica, Chicago, The Almagest, Book V., Vol. 14Google Scholar
  93. 93.
    Ribes, E., J.C. Ribes and R. Barthalot. 1987. Evidence for a Larger Sun with a Slower Rotation during the Seventeenth Century. Nature 326: 52-55 ADSCrossRefGoogle Scholar
  94. 94.
    Ribes, E., J.C. Ribes, I. Vince and P. Merlin. 1988. A survey of historical and recent solar diameter observations. Adv. Sp. Res. 8: 129-132 ADSCrossRefGoogle Scholar
  95. 95.
    Rösch, J. and R. Yerle. 1983. Solar diameter(s). Solar Phys. 82: 139-150 ADSCrossRefGoogle Scholar
  96. 96.
    Rozelot, J.P. 2006. Comment on the paper Past, present and future measurements of the solar diameter. Adv. Space Res. 37: 1649-1650 ADSCrossRefGoogle Scholar
  97. 97.
    Rozelot, J.P. and E. Bois. 1997. New results concerning the solar oblateness and consequences on the solar interior, 18th NSO Workshop, Sacramento Peak, USA, Balasubramaniam (Ed.), in Conf. Pacif. Astro. Soc. 140 : 75-82Google Scholar
  98. 98.
    Rozelot, J.P. and C. Damiani. 2011. History of solar oblateness measurements and interpretation. Eur. Phys. J. H 36: 407-436 CrossRefGoogle Scholar
  99. 99.
    Sadžakov, S. and M. Dačić. 1988. Results of diurnal measurements for the Sun, Mercury, Venus and Mars obtained in the period 1984–1986. Bull. Obs. Astron. Belgr. 138: 78-84 ADSGoogle Scholar
  100. 100.
    Sanchez, M., F. Parra, M. Soler and R. Soto. 1995. L’astrolabe DU ROA. Observations Du Soleil en 1992 (Observations of the Sun at the ROA astrolabe in 1992). Astron. Astrophys. Suppl. 110: 351ADSGoogle Scholar
  101. 101.
    Schou, J., H.M. Antia, S. Basu et al. 1998. Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505: 390-417 ADSCrossRefGoogle Scholar
  102. 102.
    Secchi, A. 1877. Le Soleil, Gauthier-Villars (Ed.), Paris, Vol. I, (428 p.) and II (484 p.)Google Scholar
  103. 103.
    Secchi, A. and P. Rosa. 1872. C. R. Acad. Sci. Paris 75: 606Google Scholar
  104. 104.
    Selhorst, C.L., A.V.R. Silva and J.E.R. Costa. 2004. Radius variations over a solar cycle. Astronomy Astrophys. 420 : 1117-1121Google Scholar
  105. 105.
    Shapiro, A.E. 1975. Archimedes’s measurement of the Sun’s apparent diameter. J. History Astronomy 6: 75-83 ADSGoogle Scholar
  106. 106.
    Shapiro, I.I. 1980. Is the sun shrinking. Science 208: 51-53 ADSCrossRefGoogle Scholar
  107. 107.
    Sigismondi, C. and F. Fraschetti. 2001. Measurements of the solar diameter in Kepler’s time. The observatory 121: 380-385 ADSGoogle Scholar
  108. 108.
    Sofia, S., S. Basu, P. Demarque, L. Li and G. Thuillier. 2005a. The nonhomologous nature of Solar Diameter Variations. Astrophys. J. 632: L147-L150ADSCrossRefGoogle Scholar
  109. 109.
    Sofia, S., D.W. Dunham, J.B. Dunham and A.D. Fiala. 1983. Solar radius change between 1925 and 1979. Nature 304: 522-526 ADSCrossRefGoogle Scholar
  110. 110.
    Sofia, S. and S.A. Endal. 1980. in The Ancient Sun, edited by Pepin, R.O., Eddy, J.A. and Merrill, R.B., Pergamon Press, New York, p. 139Google Scholar
  111. 111.
    Sofia, S., M. Haberreiter and G. Thuillier. 2005b. Past, present and future measurements of the solar diameter. Adv. Space Res. 35: 329-340 (and corrigendum : Advances in Space Research 2006 37 : 439)ADSCrossRefGoogle Scholar
  112. 112.
    Sofia, S. and L.H. Li. 2005c. Mechanisms for global solar variability. Memorie della Società Astronomica Italiana 76: 768-772 ADSGoogle Scholar
  113. 113.
    Sveshnikov, M.L. 2002. Solar Radius Variations from Transits of Mercury Across the Solar Disk. Astronomy Letters 28: 115-120 ADSCrossRefGoogle Scholar
  114. 114.
    Teleki, G., 1979. Refractional Influences in Astrometry and Geodesy, in Proc. IAU Symp. 89, edited by Tengström, E. and Teleki, G., Reidel, Dordrecht, p. 389Google Scholar
  115. 115.
    Toulmonde, M. 1995. Études Comparatives de Diamètres Solaires Observés à partir d’Intsruments Astrométriques. Ph.D. thesis, Paris Observatory, p. 223Google Scholar
  116. 116.
    Toulmonde, M. 1997. The Diameter of the Sun over the Past Three Centuries, Astron. Astrophys. 325: 1174-1178 ADSGoogle Scholar
  117. 117.
    Turck-Chièze, S. 2006. The rotation of the solar core, in The rotation of Sun and Stars, Lecture Notes in Physics. Springer, edited by Rozelot, J.P. and Neiner, V., Vol. 765, p. 123Google Scholar
  118. 118.
    Turck-Chièze, S. and other 35 co-authors. 2009. The DynaMICCS perspective (A mission for a complete and continuous view of the Sun dedicated to magnetism, space weather and space climate). Experimental Astronomy (Special Issue on ESA’s Cosmic Vision) 23: 1017-1055ADSCrossRefGoogle Scholar
  119. 119.
    Ulrich, R.K. and L. Bertello. 1995. Solar-cycle dependence of the Sun’s apparent radius in the neutral iron spectral line at 525 nm. Nature 377: 214-215 ADSCrossRefGoogle Scholar
  120. 120.
    Van Helden, A. 1985. Measuring the Universe, Cosmic Dimensions from Aristarchus to Halley. University of Chicago Press, p. 203Google Scholar
  121. 121.
    Winnick, R.A., P. Demarque, S. Basu and D.B. Guenther. 2002. Appl. J 576: 1075Google Scholar
  122. 122.
    Wittmann, A.D. 1977. The diameter of the Sun. Astron. Astrophys. 61: 225-227 ADSGoogle Scholar
  123. 123.
    Wittmann, A.D. 1993. Detection of a significant change in the solar daimeter. Sol. Phys. 145: 205-206 ADSCrossRefGoogle Scholar
  124. 124.
    Wittmann, A.D. 1997. CCD-Drift Scan Measurements of the Solar Diameter : Method and First Results. Sol. Phys. 171: 231-237 ADSCrossRefGoogle Scholar
  125. 125.
    Wittmann, A.D. and M. Bianda. 2000. Drift-Time Measurements of the Solar Diameter 1990–2000 : New Limits on Constancy, in The solar cycle and terrestrial climate, Solar and space weather Euroconference, 25–29 September 2000, Santa Cruz de Tenerife, Tenerife, Spain, edited by A. Wilson. Noordwijk, Netherlands : ESA-SP, Vol. 463, p. 113Google Scholar
  126. 126.
    Wittmann, A.D. and S. Débarbat. 1989. Die Sonnenedurchmesser und seine variabilität. Sterne und Weltraum 90: 420-426 Google Scholar
  127. 127.
    Wittmann, A.D. and S. Débarbat. 1990. Le diamètre du Soleil est-il variable? L’Astronomie 104: 8-13 ADSGoogle Scholar
  128. 128.
    Wittmann, A.D. et al. 1998. Tobias Mayers Transitmessungen der Sonne (1756–1761). Eine Neuediskussion. Gauss Gesellschaft E.V. Göttingen Mitteilungen, Vol. 35, pp. 53-63Google Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Nice Sophia-Antipolis University, OCA-Lagrange, CNRS UMR 7293Nice Cedex 4France
  2. 2.INAF–Osservatorio Astrofisico di CataniaCataniaItaly

Personalised recommendations