The European Physical Journal H

, Volume 37, Issue 2, pp 139–236 | Cite as

Thermodynamics of irreversible processes — past and present

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsmeyer, H. 1976. Density profiles in argon and nitrogen shock waves measured by the absorption of an electronic beam. J. Fluid Mech. 74: 497–513ADSCrossRefGoogle Scholar
  2. Anile, A.M., 1996. Mathematical modelling of charge carrier transport in semiconductors : Problems and Perspectives. Suppl. Rendiconti Circ. Mat. di Palermo, Part. I, Ser. II 45: 27 MathSciNetGoogle Scholar
  3. Au, J. 1998. Flames in extended thermodynamics. Proc. Int. Conf. Waves and Stability in Cont. Mech. Bari. World Scientific Press Singapoor, pp. 27–32Google Scholar
  4. Au, J. and L. Wehr. 1997. Light scattering experiment and extended thermodynamics. Contin. Mech. Thermodyn. 9: 155–163ADSCrossRefGoogle Scholar
  5. Barbera, E. 1999. On the principle of minimum entropy production for Navier-Stokes-Fourier fluids. Contin. Mech. Thermodyn. : 327–330 Google Scholar
  6. Barbera, E. and I. Müller. 2006. Inherent frame-dependence of thermodynamic fields in a gas. Acta Mech. 184: 205–216MATHCrossRefGoogle Scholar
  7. Barbera, E., I. Müller, D. Reitebuch and N.R. Zhao. 2004. in Determination of boundary conditions in extended thermodynamics. Contin. Mech. Thermodyn. 16: 411–425ADSMATHCrossRefMathSciNetGoogle Scholar
  8. Bartlmä, F. 1975. Gasdynamik der Verbrennung. Springer, WienGoogle Scholar
  9. Belousov, B.P. 1958. A periodic reaction and its mechanism. Sbornik referatov po radiacionnojj medicine za 1958. Moscow, pp. 145–147Google Scholar
  10. Bénard, H. 1900. Les tourbillons cellulaires dans une nappe liquide. Rev. Gén. Sci. Pure Appl. 11: 1261–1271Google Scholar
  11. Bird, G.A. 1970. Aspects of the structure of strong waves. Phys. Fluids 13: 1172–1177ADSCrossRefGoogle Scholar
  12. Bird, R.B., H.R. Warner and D.C. Evans. 1971. Kinetic theory and rheology of dumbbell suspensions with Brownian motion. Advances in Polymer Science 8: 1–90CrossRefGoogle Scholar
  13. Boillat, G. 1965. La propagation des ondes. Gauthier-Villars, Paris, p. 42Google Scholar
  14. Boillat, G. 1974. Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systèmes hyperboliques. C.R. Acad. Sci. Paris, Sér. A 278: 909–912MATHMathSciNetGoogle Scholar
  15. Boillat, G. and T. Ruggeri. 1997. Moment equations in the kinetic theory of gases and wave velocities. Contin. Mech. Thermodyn. 9: 205–212ADSMATHCrossRefMathSciNetGoogle Scholar
  16. Boltzmann, L. 1868. Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten. Wiener Berichte 58: 517–560Google Scholar
  17. Boltzmann, L. 1872. Weitere Studien über das Wärmegleichgewicht zwischen Gasmolekülen, in Sitzungsberichte der Akademie der Wissenschaften Wien Abt. II, pp. 275–370Google Scholar
  18. Boltzmann, L. 1886. Der zweite Hauptsatz der mechanischen Wärmetheorie. Lecture given at the ceremony of the Kaiserliche Akademie der Wissenschaften on Math 29thGoogle Scholar
  19. Boltzmann, L. 1896a. Entgegnung auf die wärmetheoretischen Betrachtungen des Hrn E. Zermelo. Ann. Phys. 57: 773–784CrossRefGoogle Scholar
  20. Boltzmann, L. 1896b. Zu Hrn Zermelos Abhandlung, Über die mechanische Erklärung irreversibler Vorgänge. Ann. Phys. 59: 793–801Google Scholar
  21. Boltzmann, L. 1895, 1898. Vorlesungen über Gastheorie I und II. Metzger&Wittig LeipzigGoogle Scholar
  22. Boltzmann, L. 1904. Über die statistische Mechanik. Lecture given at a scientific meeting in connection with the World Fair in St. Louis. See also E. Broda (1979)Google Scholar
  23. Broda, E. 1979. Ludwig Boltzmann, Populäre Schriften. Vieweg BraunschweigGoogle Scholar
  24. Callen, H.B. 1960. Thermodynamics, an introduction to the physical theories of equilibrium thermostatics and irreversible thermodynamics. John Wiley & Sons, New YorkGoogle Scholar
  25. Casimir, H.B.G. 1945. On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17: 343–350ADSCrossRefGoogle Scholar
  26. Cattaneo, C. 1948. Sulla conduzione del calore. Atti del Seminario Matematica Fisico della Università di Modena 3: 83–101MathSciNetGoogle Scholar
  27. Chapman, S.C. and T.G. Cowling. 1936, 1961. The mathematical theory of non-uniform gases. Cambridge University PressGoogle Scholar
  28. Chen, P. 1973. Growth and decay of waves in solids. in Handbuch der Physik. Springer Heidelberg, Vol. 6A/3 Google Scholar
  29. Clarke, N.A. 1975. Inelastic light scattering from density fluctuations in dilute gases. The kinetic-hydrodynamic transition in a monatomic gas. Phys. Rev. A 12: 232–244ADSCrossRefGoogle Scholar
  30. Clausius, R. 1865. Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Poggendorff’s Ann. Phys. 125: 353–400CrossRefGoogle Scholar
  31. Clausius, R. 1867. Über den zweiten Hauptsatz der mechanischen Wärmetheorie. Lecture given at the general session of German natural scientists and physicians in Frankfurt/M on September 23rd 1867. Vieweg BraunschweigGoogle Scholar
  32. Coleman, B.D. 1964. Thermodynamics of materials with memory. Arch. Rational Mech. Anal. 17: 1–46ADSMathSciNetGoogle Scholar
  33. Coleman, B.D. and V.J. Mizel. 1964. Existence of caloric equations of state in thermodynamics. J. Chem. Phys. 40: 1116–1125ADSCrossRefMathSciNetGoogle Scholar
  34. Coleman, B.D. and W. Noll. 1963. The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13: 167–178ADSMATHCrossRefMathSciNetGoogle Scholar
  35. Curtiss, C.F., R.B. Bird and O. Hassager. 1976. Kinetic theory and rheology of macromolecular solutions. Adv. Chem. Phys. 35: 31–117CrossRefGoogle Scholar
  36. de Donder, Th. 1927. L’affinité. Gautier-Villars ParisGoogle Scholar
  37. Dunn, J.E. and R.L. Fosdick. 1974. Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Rational Mech. Anal. 56: 191–252ADSMATHCrossRefMathSciNetGoogle Scholar
  38. Eckart, C. 1940a. The thermodynamics of irreversible processes I : The simple fluid. Phys. Rev. 58: 267–269ADSCrossRefGoogle Scholar
  39. Eckart, C. 1940b. The thermodynamics of irreversible processes II : Fluid mixtures. Phys. Rev. 58: 269–275ADSCrossRefGoogle Scholar
  40. Eckart, C. 1940c. The thermodynamics of irreversible processes III : Relativistic theory of the simple fluid. Phys. Rev. 58: 919–924ADSCrossRefGoogle Scholar
  41. Edelen, D.G.B. and T.A. McLennan. 1973. Material indifference : A principle or a convenience. Int. J. Eng. Sci. 11: 813–817MATHCrossRefGoogle Scholar
  42. Enskog, D. 1917. Kinetische Theorie der Vorgänge in mäßig verdünnten Gasen. Inaugural Dissertation Uppsala, Almquist and WiksellGoogle Scholar
  43. Ericksen, J.L. 1956. Overdetermination of the speed in rectilinear motionof non-Newtonian fluids. Quarterly of Applied Mathematics 14: 319–321MathSciNetGoogle Scholar
  44. Ericksen, J.L. 1976. On equations of motion of liquid crystals. Quarterly J. Mech. Appl. Math. 29: 203–208MATHCrossRefGoogle Scholar
  45. Ericksen, J.L. 1991. Introduction to the thermodynamics of solids. Chapman & Hall, LondonGoogle Scholar
  46. Feinberg, M. 1979. Lectures on chemical reaction networks. Mathematical Research Center, University of Wisconsin Google Scholar
  47. Fick, A. 1855. Über Diffusion. Ann. Phys. 94: 59–86CrossRefGoogle Scholar
  48. Fisher, A. and P.D. Marsden. 1972. The Einstein evolution equations as a first order quasi-linear symmetric hyperbolic system I. Commun. Math. Phys. 28: 1–38ADSCrossRefGoogle Scholar
  49. Fourier, J.B.J. 1808. Mémoire sur la propagation de la chaleur dans les corps solides. Nouveau Bulletin des Sciences par la Societé Philomatique de Paris, t. I, n° 6. Paris, Bernard pp. 112–116 Google Scholar
  50. Fourier, J.B.J. 1822. Théorie analytique de la chaleur. Paris : Firmin Didot Père et FilsGoogle Scholar
  51. Frank, F.C. 1958. On the theory od liquid crystals. Discuss. Faraday Soc. 25: 19–28CrossRefGoogle Scholar
  52. Friedrichs, K.O. and P.O. Lax. 1971. Systems of conservation laws with a convex extension. Proc. Natal. Acad Sci. USA 68: 1686–1688ADSMATHCrossRefMathSciNetGoogle Scholar
  53. Fu, S., Y. Huo and I. Müller. 1993. Thermodynamics of pseudoelasticity – an analytical approach. Acta Mech. 99: 1–19CrossRefGoogle Scholar
  54. de Gennes, P.G. 1974. The Physics of Liquid Crystals. Clarendon Press OxfordGoogle Scholar
  55. Gibbs, J.W. 1875–1878. On the equilibrium of heterogeneous substances. Transactions of the Connecticut Academy III. pp. 108–248, Oct. 1875–May 1876, and pp. 342–524, May 1877–July 1878Google Scholar
  56. Giesekus, H. 1956. Das Reibungsgesetz der strukturviskosen Flüssigkeit. Kolloid-Zeitschr. 147–149: 29–45CrossRefGoogle Scholar
  57. Giesekus, H. 1958. Die rheologische Zustandsgleichung. Rheol. Acta 1: 2–20CrossRefGoogle Scholar
  58. Glansdorff, P. and I. Prigogine. 1971. Thermodynamic theory of structure, stability and fluctuations. Wiley-Interscience, London New YorkGoogle Scholar
  59. Godunov, S.K. 1961. An interesting class of quasi-linear systems. Dokl. Akad. Nauk 139, Soviet Math. 2: 521–523MathSciNetGoogle Scholar
  60. Grad, H. 1949. On the kinetic theory of rarefied gases. Comm. Pure Appl. Math 2: 331–407MATHCrossRefMathSciNetGoogle Scholar
  61. Grad, H. 1952. The profile of a steady plane shock wave. Comm. Pure Appl. Math 5: 257–300MATHCrossRefMathSciNetGoogle Scholar
  62. Grad, H. 1958. Principles of the kinetic theory of rarefied gases. in Handbuch der Physik, Springer Heidelberg, Vol. XII Google Scholar
  63. Green, W.A. 1964. The growth of plane discontinuities propagating into a homogeneous deformed material. Arch. Rational Mech. Anal. 16: 79–88ADSMATHCrossRefMathSciNetGoogle Scholar
  64. Grioli, G. 1979. Sulla propagazione di onde termomechaniche nei continui. Nota I, II Atti Acc. Naz. Lincei 67: 332–339, 426–432MATHMathSciNetGoogle Scholar
  65. de Groot, S.R. and P. Mazur. 1962. Non-equilibrium thermodynamics. North Holland, Amsterdam Google Scholar
  66. de Groot, S.R. and P. Mazur. 1974. Anwendung der Thermodynamik irreversibler Prozesse. BI-Taschenbuch Nr. 162 Bibliographisches Institut, Mannheim/Wien/ZürichGoogle Scholar
  67. Hackl, K. and F.D. Fischer. 2008. On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc. R. Soc. A 464: 117–132ADSMATHCrossRefMathSciNetGoogle Scholar
  68. Hemmer, P.C. 1959. Dynamic and stochastic types of motion in the linear chain. Det Fysiske Seminar i Trondheim No. 2 Google Scholar
  69. Hirschfelder, J.O., C.F. Curtiss and D.E. Campbell. 1953. The theory of flame propagation IV. J. Phys. Chem. 57: 403–414CrossRefGoogle Scholar
  70. Holway, L.H. 1964. Existence of kinetic theory solutions to the shock structure problem. Phys. Fluids 7: 911–913ADSMATHCrossRefGoogle Scholar
  71. Joseph, D.D. 1981. Instability of the rest state of fluids of arbitrary grade greater than one. Arch. Rational Mech. Anal. 45: 251–256Google Scholar
  72. Jou, D., J. Casas-Vázquez and G. Lebon. 1993. Extended Irreversible Thermodynamics, Springer Heidelberg Google Scholar
  73. Kullback, S. and R.A. Leibler. 1951. On information and sufficiency, in Annals of Mathematical Statistics, Vol. 22, pp. 79–86Google Scholar
  74. Landau, L.D. 1941. The theory of superfluidity of HeII. J. Phys. (USSR) 5: 71–90Google Scholar
  75. Lifschitz, E.M. 1944. Radiation of sound in HeII. J. Phys. (USSR) 8: 110 Google Scholar
  76. Liu, I-Shih. 1972a. On Irreversible Thermodynamics. Dissertation Johns Hopkins UniversityGoogle Scholar
  77. Liu, I-Shih. 1972b. Method of Lagrange multipliers for the exploitation of the entropy inequality. Arch. Rational Mech. Anal. 46: 131–148ADSMATHMathSciNetGoogle Scholar
  78. Liu, I-Shih and I. Müller. 1983. Extended thermodynamics of classical and degenerate gases. Arch. Rational Mech. Anal. 83: 285–332ADSMATHCrossRefMathSciNetGoogle Scholar
  79. Liu, I-Shih and I. Müller. 1984. Thermodynamics of mixtures of fluids. in Rational Thermodynamics, edited by C. Truesdell, 2nd edn. pp. 264–285Google Scholar
  80. Liu, I-Shih, I. Müller and T. Ruggeri. 1986. Relativistic thermodynamics of gases. Ann. Phys. 169: 191–219ADSCrossRefGoogle Scholar
  81. Longuet-Higgins, C. and M.E. Fisher. 1991. Lars Onsager 1903–1976. Biographical Memoir. National Academy of Sciences, Washington D.C.Google Scholar
  82. Loschmidt, J. 1876. Über den Zustand des Wärmegleichgewichts eines Systems von Körpern mit Rücksicht auf die Schwerkraft. Sitzungsberichte der Akademie der Wissenschaften Wien, Abteilung 2, 73 (1876), p. 128 and 366. Cont’d in 75 (1877), p. 287, and in 76 (1877), p. 209 Google Scholar
  83. Loschmidt, J. 1865. Zur Grösse der Luftmoleküle. in Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, Wien 52, Abt. II, pp. 395–413Google Scholar
  84. Lotka, A.J. 1910. Zur Theorie der periodischen Reaktionen. Z. Phys. Chem. 72: 508–511Google Scholar
  85. Magalinskij, V.B. 1959. Dynamical Model in the Theory of the Brownian Motion. Zh. Eksp. Teor. Fiz. 36: 1942–1944 [Soviet Physics JETP 36: 1381–1382]Google Scholar
  86. Maxwell, J.C. 1860. Illustrations of the dynamical theory of gases. Phil. Mag. 19: 19–32, cont’d in 20: 21–37 Google Scholar
  87. Maxwell, J.C. 1879. On Boltzmann’s theorem on the average distribution of energy in a system of material points. Cambridge Philosophical Society’s Transactions XII, pp. 547–570Google Scholar
  88. Meixner, J. 1941. Zur Thermodynamik der Thermodiffusion. Ann. Phys. 39: 333–365MATHCrossRefGoogle Scholar
  89. Meixner, J. 1943. Zur Theorie der irreversiblen Prozesse. Z. Phys Chem. B 53: 235–263Google Scholar
  90. Meixner, J. 1968. TIP has many faces. Proc. IUTAM Symposium Vienna, June 22–28, 1966. Springer Vienna Google Scholar
  91. Miller, D.G. 1960. Thermodynamics of irreversible processes; the experimental verification of the Onsager reciprocal relations. Chem. Rev. 15–37Google Scholar
  92. Müller, I. 1962. Durch eine äußere Kraft erzwungene Bewegung der mittleren Masse eines linearen Systems von N durch Federn verbundenen Massen. Diploma thesis, Technical University Aachen Google Scholar
  93. Müller, I. 1966. Zur Ausbreitungsgeschwindigkeit von Störungen in kontinuierlichen Medien, Dissertation Technical University AachenGoogle Scholar
  94. Müller, I. 1967a. Zum Paradox der Wärmeleitungstheorie. Z. Phys. 198: 329–344ADSMATHCrossRefGoogle Scholar
  95. Müller, I. 1967b. On the entropy inequality. Arch. Rational Mech. Anal. 26: 118–141ADSMATHCrossRefMathSciNetGoogle Scholar
  96. Müller, I. 1968. A thermodynamic theory of mixtures of fluids. Arch. Rational Mech. Anal. 28: 1–39ADSMATHCrossRefMathSciNetGoogle Scholar
  97. Müller, I. 1970. A new systematic approach to non-equilibrium thermodynamics. Pure Appl. Chem. 22: 335–342CrossRefGoogle Scholar
  98. Müller, I. 1972. On the frame dependence of stress and heat flux. Arch. Rational Mech. Anal. 45: 241–250ADSMATHCrossRefMathSciNetGoogle Scholar
  99. Müller, I. 1973. A new approach to thermodynamics of simple mixtures. Zeitschrift für Naturforschung A 28: 1801–1813ADSGoogle Scholar
  100. Müller, I. 1979. Stress and heat flux in a dumbbell solution. Archives of Mechanics 31: 233–249MATHGoogle Scholar
  101. Müller, I. 1999. Speeds of propagation in classical and relativistic extended thermodynamics. http:/www.livingreviews.org/articles/Volume2/1999-1mueller
  102. Müller, I. 2007. A history of thermodynamics, the doctrine of energy and entropy. Springer HeidelbergGoogle Scholar
  103. Müller, I. 2010. Thermodynamics and evolutionary genetics. Contin. Mech. Thermodyn. 22: 189–201ADSMATHCrossRefMathSciNetGoogle Scholar
  104. Müller, I. and W.H. Müller. 2009. Fundamentals of thermodynamics and applications, with many citations from Avogadro to Zermelo. Springer HeidelbergGoogle Scholar
  105. Müller, I. and T. Ruggeri. 1993. Extended Thermodynamics. Springer Tracts of Natural Philosophy. Springer New York, Vol. 37Google Scholar
  106. Müller, I. and T. Ruggeri. 1998. Rational Extended Thermodynamics. Springer Tracts of Natural Philosophy, 2nd edn., Springer New York, Vol. 37Google Scholar
  107. Müller, I. and T. Ruggeri. 2004. Stationary heat conduction in radially symmetric situations. J. Non-Newtonian Fluid Mech. 119: 139–143MATHCrossRefGoogle Scholar
  108. Müller, I. and P. Strehlow. 2003. Kinetic temperature and thermodynamic temperature. 8th Temperature Symposium Proceeding. Springer New YorkGoogle Scholar
  109. Müller, I. and P. Villaggio. 1976. Conditions of stability and wave speeds for fluid mixtures. Meccanica XI: 191–195CrossRefGoogle Scholar
  110. Müller, I., D. Reitebuch and W. Weiss. 2002. Extended thermodynamics – consistent in order of magnitude. Contum. Mech. Thermodyn. 15: 113–146CrossRefGoogle Scholar
  111. Navier, L. 1822. Mémoires sur les lois du mouvement des fluids. Mémoires de l’Académie des Sciences VI, pp. 389–440 Google Scholar
  112. Noll, W. 1958. A mathematical theory of the behaviour of Continuous media. Arch. Rational Mech. Anal. 2: 198–26 ADSCrossRefMathSciNetGoogle Scholar
  113. Ohwada, T. 1996. Heat flow and temperature and density distributions in a rarefied gas between parallel plates with different temperatures. Finite difference analysis of the non-linear Boltzmann equation for hard-sphere molecules. Phys. Fluid. 15: 2668–2680Google Scholar
  114. Oldroyd, J.G. 1950. On the formulation of rheological equations of state. Proc. Roy. Soc. Lond. A 200: 523–541ADSMATHCrossRefMathSciNetGoogle Scholar
  115. Onsager, L. 1931a. Reciprocal relations in irreversible thermodynamics I. Phys. Rev. 37: 405–426ADSCrossRefGoogle Scholar
  116. Onsager, L. 1931b. Reciprocal relations in irreversible thermodynamics II. Phys. Rev. 38: 2265–2279ADSMATHCrossRefGoogle Scholar
  117. Oseen, C.W. 1921. Versuch einer kinetischen Theorie der kristallinischen Flüssigkeiten, Gl. Svenska Vetenskapsakademiens Handligar, 61, No. 16Google Scholar
  118. Planck, M. 1970. Wissenschaftliche Autobiographie. 5th edn. J.A. Barth, LeipzigGoogle Scholar
  119. Poincaré, H. 1890. Sur le problème des trois corps et les équations de dynamique. Acta Mat. 13: 1–270MATHGoogle Scholar
  120. Poisson, S.D. 1829. Mémoire sur l’équilibre et le mouvement des corps élastique. MAS 8: 357–570Google Scholar
  121. Poisson, S.D. 1831. Mémoires sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et des fluides. Journal de l’École Polytechnique XIII cahier 20: 139–186Google Scholar
  122. Prigogine, I. and G. Nicolis. 1977. Self-organization in non-equilibrium systems. John Wiley New York Google Scholar
  123. Prigogine, I. and I. Stengers. 1983. Dialog mit der Natur. Neue Wege naturwissenschaftlichen Denkens. Piper MünchenGoogle Scholar
  124. Reitebuch, D. 2005. Konsistent geordnete erweiterte Thermodynamik. Dissertation Technische Universität Berlin Google Scholar
  125. Rubin. 1961. Statistical Mechanics of simple cubic lattices. Model for the study of Brownian motion, II. J. Math. Phys. 2: 373–381ADSCrossRefGoogle Scholar
  126. Ruggeri and Strumia. 1981. Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic fluid dynamics. Ann. Inst. Henri Poincaré 34 A : 65–84Google Scholar
  127. Schrödinger, E. 1948. Statistical Mechanics. Cambridge at the University PressGoogle Scholar
  128. Simonsohn, G. 1972. The role of the first order auto-correlation function in conventional grating spectroscopy. Opt. Commun. 5 Google Scholar
  129. Sommerfeld, A. and H. Bethe. 1956. Elektronentheorie der Metalle. Handbuch der Physik XIV, Springer, HeidelbergGoogle Scholar
  130. Spengler, O. 1917. Der Untergang des Abendlandes. Umrisse einer Morphologie der Weltgeschichte. C.H. Beck München Google Scholar
  131. Stefan, J. 1971. Über das Gleichgewicht und die Bewegung, insbesondere die Diffusion von Gasmengen. Wiener Sitzungsberichte 63: 63–124Google Scholar
  132. Stokes, G.G. 1845. On the theories of the internal friction of fluids and of the equilibrium and motion of elastic solids. Transactions of the Cambridge Philosophical Society III: 287–305Google Scholar
  133. Stokes, G.G. 1851. On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society IX: 8–106ADSGoogle Scholar
  134. Struchtrup, H. 1991. Der zweite Schall in der Literatur der Festkörperphysik – eine kritische Durchsicht. Diploma thesis, TU BerlinGoogle Scholar
  135. Struchtrup, H. 1996. Zur irreversiblen Thermodynamik der Strahlung. Doctoral dissertation TU. BerlinGoogle Scholar
  136. Struchtrup, H. 1997. An extended moment method in radiative transfer : The matrices of mean absorption and scattering coefficients. Ann. Phys. 257: 111–135ADSMATHCrossRefMathSciNetGoogle Scholar
  137. Struchtrup, H. 1998a. Extended thermodynamics of Radiation, in Rational Extended Thermodynamics, edited by I. Müller, T. Ruggeri, Springer New York, Chap. 13Google Scholar
  138. Struchtrup, H. 1998b. Extended Thermodynamicds of Phonons. in Rational Extended Thermodynamics, edited by I. Müller, T. Ruggeri, Springer New York, Chap. 14Google Scholar
  139. Struchtrup, H. 2005. Macroscopic Transport Equations for Rarefied Gases – Approximation Methods in the Kinetic Theory. Springer, HeidelbergGoogle Scholar
  140. Thomson, W. 1862. On the secular cooling of the earth. Trans. R. Soc. Edinb. 23: 157–159Google Scholar
  141. Torrilhon, M. 1999. Thermodynamische Berechnung der Ausbreitung von Flammen. Diploma thesis Technical University BerlinGoogle Scholar
  142. Truesdell, C. 1965. Elements of Continuum Mechanics. Springer New YorkGoogle Scholar
  143. Truesdell, C. 1966. Six Lectures on Natural Philosophy. Springer HeidelbergGoogle Scholar
  144. Truesdell, C. 1968. Sulle basi della termodinamica delle miscele. Rendiconti Accademia Nazionale dei Lincei 8: 44 Google Scholar
  145. Truesdell, C. 1969. Rational Thermodynamics. McGraw Hill Book Company, New YorkGoogle Scholar
  146. Truesdell, C. 1976. Correction of two errors in the kinetic theory that have been used to cast unfounded doubt upon the principle of material frame indifference. Meccanica 11: 196–199ADSMATHCrossRefGoogle Scholar
  147. Turner, R.E. 1960. Motion of a heavy particle in a one-dimensional chain. Physica D 26: 269–273Google Scholar
  148. Virga, E. 1994. Variational Theories for Liquid Crystals. Chapman & Hall LondonGoogle Scholar
  149. Volterra, V. 1931. Lecons sur la théorie mathématique de la lutte pour la vie. Gauthier-Villars ParisGoogle Scholar
  150. Waldmann, L. 1958. Transporterscheinungen in Gasen von mittlerem Druck. in Handbuch der Physik, Springer Heidelberg, Vol. XIIGoogle Scholar
  151. Weiss, W. 1990. Zur Hierarchie der erweiterten Thermodynamik. Dissertation Technical University Berlin Google Scholar
  152. Weiss, W. 1995. Continuous shock structure in extended thermodynamics. Phys. Rev. E Part A 52: 5760–5763ADSCrossRefGoogle Scholar
  153. Weiss, W. 1996a. The balance of entropy on earth. Cont. Mech. Thermodyn. 8: 37–51CrossRefGoogle Scholar
  154. Weiss, W. 1996b. Coments on Existence of kinetic theory solutions to the shock structure problem [Phys. Fluids 7, 911 (1964)] by L.H. Holway. Phys. Fluids 8: 1689–1690Google Scholar
  155. Weiss, W. 1998. On the radiative and material entropy production. Proc. IX Int. Conf. on Waves and Stability in Continuous Media. Suppl. Rendiconti Circ. Matematico di Palermo II, 57: 501–506Google Scholar
  156. Weiss, W. and I. Müller. 1995b. Light scattering and extended thermodynamics. Cont. Mech. Thermodyn. 7: 123–177CrossRefGoogle Scholar
  157. Woods, L.C. 1981. The bogus axioms of continuum mechanics. Bull. Math. Appl. 17: 98–102MATHMathSciNetGoogle Scholar
  158. Yong, Wen-An. 2007. An interesting class of hyperbolic balance laws. e-print service : http://arxiv.org/pdf/0707.3708.pdf, pp. 1–21
  159. Zermelo, E. 1896a. Über einen Satz der Dynamik und die mechanische Wärmetheorie. Ann. Phys. 57: 485–494CrossRefGoogle Scholar
  160. Zermelo, E. 1896b. Über mechanische Erklärungen irreversibler Vorgänge. Eine Antwort auf Hrn. Boltzmann’s, Entgegnung. Ann. Phys. 59: 392–398Google Scholar
  161. Zhapotinsky, A.M. 1964. Periodic liquid phase reactions. Doklady Akademija Nauk SSSR 157: 392–395Google Scholar
  162. Ziegler, H. 1977, 1983. An Introduction to Thermodynamics. North Holland Publishing Company, AmsterdamGoogle Scholar
  163. Ziegler, H. and C. Wehrli. 1987. The derivation of constitutive relations from the free energy and their dissipation function. Advances in Applied Mechanics 25: 183–238ADSMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Thermodynamik und Thermische Verfahrenstechnik Technische Universität BerlinBerlinGermany
  2. 2.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany

Personalised recommendations