Advertisement

The European Physical Journal H

, Volume 37, Issue 4, pp 567–569 | Cite as

From the seminar on Mathematical Statistical Physics in Moscow State University, 1962–1994. How everything started

  • Ya. G. SinaiEmail author
Personal recollection
  • 142 Downloads
Part of the following topical collections:
  1. Topical issue: Seminar on Mathematical Statistical Physics in Moscow State University, 1962–1994

Keywords

Ising Model Gibbs State Cluster Expansion Gibbs Distribution Contour Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.N. Bogoljubov, D.Ya. Petrina, B.I. Khatset, Mathematical description of the equilibrium state of the classical system on the basis of the formalism of the canonical ensemble, Teor. Mat. Fiz. 3, 251–274 (1969). Translation in : Theor. Math. Phys. 1, 194–212 (1969)Google Scholar
  2. 2.
    N.N. Bogoljubov, B.I. Khatset, On some mathematical problems of the theory of statistical equilibrium, Doklady Academii Nauk USSR. 66, 321–324 (1949)Google Scholar
  3. 3.
    R.L. Dobrushin, Investigation of conditions for the asymptotic existence of the configuration integral of Gibbs distribution, Teor. Ver. Prim. 9, 626–643 (1964). Translated in : Theory Probab. Appl. 9, 566–581 (1964)Google Scholar
  4. 4.
    R.L. Dobrushin, Existence of a phase transition in the two and three dimensional Ising models, Teor. Ver. Prim. 10, 209–230 (1965). Translated in : Theory Probab. Appl. 10, 193–213 (1965)MathSciNetGoogle Scholar
  5. 5.
    F.A. Berezin, Ya.G. Sinai, Existence of phase transitions for the lattice gas with interparticle attractions, Trudy Mosc. Mat. Ob. 17, 219–236 (1967)Google Scholar
  6. 6.
    R.L. Dobrushin, Description of a random field by means of conditional probabilities and conditions for its regularity, Teor. Ver. Prim. 13, 201–229 (1968). Translated in : Theory Probab. Appl. 13, 197–224 (1968)Google Scholar
  7. 7.
    R.L. Dobrushin, Gibbsian random fields for lattice systems with pairwise interactions, Funk. An. Pril. 2, 31–43 (1968). Translated in : Funct. Anal. Appl. 2, 292–301 (1968)Google Scholar
  8. 8.
    R.L. Dobrushin, Gibbsian random fields. General case, Funk. An. Pril. 3, 27–35 (1969). Translated in : Funct. Anal. Appl. 3, 22–28 (1969)Google Scholar
  9. 9.
    O. Lanford, D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Commun. Math. Phys. 13, 174–215 (1969)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    R.L. Dobrushin, The problem of uniqueness of a Gibbsian random field and the problem of phase transitions, Funk. An. Pril. 2, 44–57 (1968). Translated in : Funct. Anal. Appl. 2, 302–312 (1968)Google Scholar
  11. 11.
    E. Dinaburg, E.A. Pechersky, S.A. Pirogov, S. Shlosman, Yu.M. Suhov, Contour Technics, Eur. Phys. J. H (2012), DOI : 10.1140/epjh/e2012-10052-6
  12. 12.
    S.A. Pirogov, Ya.G. Sinai, Phase diagrams for classical lattice systems, Teoret. Mat. Fiz. 25, 358–369 (1975). Translated in : Theoret. Math. Phys. 25, 1185–1192 (1975)MathSciNetGoogle Scholar
  13. 13.
    S.A. Pirogov, Ya.G. Sinai, Phase diagrams for classical lattice systems, Teoret. Mat. Fiz. 26, 61–76 (1976). Translated in : Theoret. Math. Phys. 26, 39–49 (1976)MathSciNetGoogle Scholar
  14. 14.
    R.L. Dobrushin. Gibbs states describing the coexistence of phases for a three-dimensional Ising model, Teor. Ver. Prim. 17, 619–639 (1972) Translated in : Theory Probab. Appl. 17, 582–600 (1972)Google Scholar
  15. 15.
    R.L. Dobrushin, S. Shlosman, Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics, Commun. Math. Phys. 42, 31–40 (1975)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    R.A. Minlos, E.A. Pechersky, S.A. Pirogov, Yu.M. Suhov, Gibbs random fields on the lattice. Definitions, existence, uniqueness, Eur. Phys. J. H (2012), DOI : 10.1140/epjh/e2012-10049-7
  17. 17.
    V.A. Malyshev, R.A. Minlos, Gibbs Random Fields. The method of cluster expansions (Nauka, Moscow, 1985). English translation by Kluwer, Academic Publishers, 1991.Google Scholar
  18. 18.
    P. Bleher, Hierarchical models and renornalization group. Critical phenomena in the Dyson hierarchical model and renormalization group, Eur. Phys. J. H (2012), DOI : 10.1140/epjh/e2012-10053-x
  19. 19.
    B.M. Gurevich, Y.M. Suhov, Dynamical systems of infinitely many particles, Eur. Phys. J. H (2012), DOI : 10.1140/epjh/e2012-10054-2

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Mathematics DepartmentPrinceton UniversityPrincetonUSA
  2. 2.Landau Institute of Theoretical PhysicsMoscowRussia

Personalised recommendations