Advertisement

The European Physical Journal H

, Volume 37, Issue 4, pp 595–603 | Cite as

From the seminar on Mathematical Statistical Physics in Moscow State University, 1962–1994. Constructive criteria

  • S. ShlosmanEmail author
Article
Part of the following topical collections:
  1. Topical issue: Seminar on Mathematical Statistical Physics in Moscow State University, 1962–1994

Keywords

Partition Function Constructive Criterion Gibbs State Logarithmic Sobolev Inequal Singleton Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dobrushin, R.L. 1968. Description of a random field by means of conditional probabilities and conditions for its regularity. Teor. Ver. Prim. 13 : 201–229. Translated in : Theory Probab. Appl. 13 : 197–224 (1968)Google Scholar
  2. Dobrushin, R.L. and E.A. Pechersky. 1981. Uniqueness conditions for finitely dependent random fields, in Random Fields, North-Holland, Amsterdam, Oxford, New York, Vol. 1, pp. 232–262Google Scholar
  3. Dobrushin, R.L. and S.B. Shlosman. 1985a. Constructive criterion for the uniqueness of Gibbs fields, in : Statistical Physics and Dynamical Systems, edited by J. Fritz, A. Jaffe and D. Szasz, Basel-Boston, Birkhauser, pp. 347–370Google Scholar
  4. Dobrushin, R.L. and S.B. Shlosman. 1985b. Completely analytical Gibbs fields, in : Statistical physics and dynamical systems (Koszeg, 1984), Progr. Phys. 10 : 371–404MathSciNetGoogle Scholar
  5. Dobrushin, R.L. and S.B. Shlosman. 1987. Completely analytical interactions : constructive description. J. Stat. Phys. 46 : 983–1014MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. Ioshida, N. 2001. The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice. Ann. Inst. Henri Poincare 37 : 223–243ADSCrossRefGoogle Scholar
  7. Martinelli, F., E. Olivieri and R. Schonmann. 1994. For 2-D lattice spin systems weak mixing implies strong mixing. Commun. Math. Phys. 165 : 33–47MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. Schonmann, R.H. and S.B. Shlosman. 1995. Complete Analyticity for 2D Ising Completed. Commun. Math. Phys. 170 : 453–482MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. Shlosman, S. 1986a. Uniqueness and half-space nonuniqueness of Gibbs states in Czech models. Teor. Mat. Fiz. 66 : 430–444. Translated in : Theoret. Math. Phys. 66 : 284–293 (1986)MathSciNetCrossRefGoogle Scholar
  10. Shlosman, S. 1986b. Unusual analytical properties of some lattice models : complimentary part to the Lee-Yang theory. Teor. Mat. Fiz. 69 : 273–278. Translated in : Theoret. Math. Phys. 69 : 1147–1150 (1986)MathSciNetCrossRefGoogle Scholar
  11. Stroock, D.W. and B. Zegarlinski. 1992. The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition. Commun. Math. Phys. 144 : 303–323MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Centre de Physique ThéoriqueCNRS, LuminyMarseille Cedex 9France
  2. 2.Institut of the Information Transmission ProblemsRASMoscowRussia

Personalised recommendations