The European Physical Journal H

, Volume 36, Issue 3, pp 327–352 | Cite as

Conceptual objections to the Bohr atomic theory — do electrons have a “free will” ?

  • Helge KraghEmail author


The atomic model introduced by Bohr in 1913 dominated the development of the old quantum theory. Its main features, such as the radiationless stationary states and the discontinuous quantum jumps between the states, were hard to swallow for contemporary physicists. While acknowledging the empirical power of the theory, many scientists criticized its foundation or looked for ways to reconcile it with classical physics. Among the chief critics were A. Crehore, J.J. Thomson, E. Gehrcke and J. Stark. This paper examines from a historical perspective the conceptual objections to Bohr’s atom, in particular the stationary states (where electrodynamics was annulled by fiat) and the mysterious, apparently teleological quantum jumps. Although few of the critics played a constructive role in the development of the old quantum theory, a history neglecting their presence would be incomplete and distorted.


Quantum Theory Classical Physic Stationary Orbit German Physicist Quantum Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arabatzis, Theodore. 2006. Representing Electrons: A Biographical Approach to Theoretical Entities. Chicago: University of Chicago PressGoogle Scholar
  2. Benz, Ulrich. 1975. Arnold Sommerfeld: Lehrer und Forscher and der Schwelle zum Atomzeitalter. Stuttgart: Wissenschaftlicher VerlagsgesellschaftGoogle Scholar
  3. Bohr, Niels. 1913. On the constitution of atoms and molecules. Philos. Mag. 26: 1–25; 476–502; 857–875Google Scholar
  4. Bohr, Niels. 1915. On the quantum theory of radiation and the structure of the atom. Philos. Mag. 30: 394–415Google Scholar
  5. Bohr, Niels. 1918. On the quantum theory of line-spectra, Part I: On the general theory. Kgl. Danske Videnskabernes Skrifter, Naturvidenskabelig og Mathematisk Afdeling, 8. Række IV.1Google Scholar
  6. Bohr, Niels. 1922. The Theory of Spectra and Atomic Constitution, translated by A.D. Udden. Cambridge: Cambridge University PressGoogle Scholar
  7. Bohr, Niels. 1923a. The structure of the atom. Nature 112: 29–44CrossRefADSGoogle Scholar
  8. Bohr, Niels 1923b. The effect of electric and magnetic fields on spectral lines. Proc. Phys. Soc. 25: 275–302Google Scholar
  9. Bohr, Niels 1924. On the application of the quantum theory to atomic structure. Part I: The fundamental postulates. Proc. Cambridge Philos. Soc. (Suppl.) 22: 1–44CrossRefGoogle Scholar
  10. Born, Max. 1971. The Born-Einstein Letters. London: MacmillanGoogle Scholar
  11. Brillouin, Marcel. 1919. Actions mécaniques à hérédité discontinue par propagation; essai de théorie dynamique de l’atome à quanta. Comptes Rendus 168: 1318–1320zbMATHGoogle Scholar
  12. Campbell, Norman R. 1913. Modern Electrical Theory. Cambridge: Cambridge University PressGoogle Scholar
  13. Crehore, Albert C. 1921. An atomic model based on electromagnetic theory. Philos. Mag. 42: 569–593Google Scholar
  14. Darrigol, Olivier. 1992. From c-Numbers to q-Numbers: The Classical Analogy in the History of Quantum Theory. Berkeley: University of California PressGoogle Scholar
  15. Darrigol, Olivier. 1997. Classical concepts in Bohr’s atomic theory (1913–1925). Physis 34: 545–567MathSciNetGoogle Scholar
  16. Eckert, Michael and Karl Märker. 2000. Arnold Sommerfeld. Wissenschaftlicher Briefwechsel, Vol. 1. Berlin: Verlag für Geschichte der Naturwissenschaften und der TechnikGoogle Scholar
  17. Eckert, Michael and Karl Märker. 2004. Arnold Sommerfeld. Wissenschaftlicher Briefwechsel, Vol. 2. Berlin: Verlag für Geschichte der Naturwissenschaften und der TechnikGoogle Scholar
  18. Epstein, Paul S. 1918. Anwendungen der Quantenlehre in der Theorie der Serienspektren. Naturwissenschaften 17: 230–253CrossRefADSGoogle Scholar
  19. Eve, Arthur S. 1939. Rutherford. Being the Life and Letters of the Rt Hon. Lord Rutherford, O.M. Cambridge: Cambridge University PressGoogle Scholar
  20. Favrholdt, David. 1999. Niels Bohr. Collected Works, Vol. 10. Amsterdam: North-HollandGoogle Scholar
  21. Fujisaki, Chiyoko. 1982. P. Drude’s theory of dispersion of light and atom model (1900–1913). Hist. Scient. 22: 19–68Google Scholar
  22. Gehrcke, Ernst. 1914. Über ein Modell zur Erklärung der Lichtemission. Phys. Zs. 15: 123–127Google Scholar
  23. Gehrcke, Ernst. 1920. Über ein Modell zur Erklärung der Lichtemission, V. Phys. Zs. 21: 172–175Google Scholar
  24. Heilbron, John L. and Thomas S. Kuhn. 1969. The genesis of the Bohr atom. Hist. Stud. Phys. Sci. 1: 211–290Google Scholar
  25. Hicks, William M. 1914. Discussion on the structure of atoms and molecules. Brit. Ass. Adv. Sci., Report, 296–299Google Scholar
  26. Holton, Gerald. 1970. The roots of complementarity. Dædalus 99: 1015–1055Google Scholar
  27. Hoyer, Ulrich. 1981. Niels Bohr. Collected Works, Vol. 2. Amsterdam: North-HollandGoogle Scholar
  28. Jammer, Max. 1966. The Conceptual Development of Quantum Mechanics. New York: McGraw-HillGoogle Scholar
  29. Jeans, James. 1913. Discussion on radiation. Brit. Ass. Adv. Sci., Report, 376–386Google Scholar
  30. Klein, Martin J. 1970. Paul Ehrenfest. Vol. 1: The Making of a Theoretical Physicist. Amsterdam: North-HollandGoogle Scholar
  31. Kojima, Chieko. 2004. La physique Français avant Louis de Broglie. Ann. Fond. Louis de Broglie 29: 767–783Google Scholar
  32. Kragh, Helge. 1985. The fine structure of hydrogen and the gross structure of the physics community, 1916–26. Hist. Stud. Phys. Sci. 16: 67–125Google Scholar
  33. Kragh, Helge. 2011. Resisting the Bohr atom: The early British opposition. Phys. Persp. 13: 4–35CrossRefGoogle Scholar
  34. Kramers, Hendrik A. and Helge Holst. 1923. The Atom and the Bohr Theory of its Structure: An Elementary Presentation. London: GyldendalGoogle Scholar
  35. Kuhn, Thomas S. 1978. Black-Body Theory and the Quantum Discontinuity, 1894–1912. Oxford: Clarendon PressGoogle Scholar
  36. Larmor, Joseph. 1897. On the theory of the magnetic influence on spectra; and on the radiation from moving ions. In Larmor, Mathematical and Physical Papers, Vol. 2, 1929, pp. 140–149. Cambridge: Cambridge University PressGoogle Scholar
  37. Lewis, Gilbert N. 1916. The atom and the molecule. J. Am. Chem. Soc. 38: 762–785CrossRefGoogle Scholar
  38. Lewis, Gilbert N. 1917. The static atom. Science 46: 297–302CrossRefADSGoogle Scholar
  39. Lewis, Gilbert N. 1923. Valence and the Structure of Atoms and Molecules. New York: Chemical Catalog CompanyGoogle Scholar
  40. Lorentz, Hendrik A. 1922. On Whittaker’s quantum mechanism in the atom. Proc. Roy. Acad. Amsterdam 31: 414–422Google Scholar
  41. Mehra, Jagdish and Helmut Rechenberg. 1982. The Historical Development of Quantum Theory, Vol. 1. New York: SpringerGoogle Scholar
  42. Meyenn, Karl von. 2011. Eine Entdeckung von ganz Ausserordentlicher Tragweite: Schrödinger’s Briefwechsel zur Wellenmechanik und zum Katzenparadoxon. Heidelberg: SpringerGoogle Scholar
  43. Nisio, Sigeko. 1973. The formation of the Sommerfeld theory of 1916. Jap. Stud. Hist. Sci. 12: 39–78Google Scholar
  44. Oseen, Carl W. 1915. Das Bohrsche Atommodell und die Maxwellschen Gleichungen. Phys. Zs. 16: 395–405Google Scholar
  45. Page, Leigh. 1922. Radiation from a group of electrons. Phys. Rev. 20: 18–25CrossRefADSGoogle Scholar
  46. Page, Leigh. 1925. The Balmer law as an equation of motion. Phys. Rev. 23: 429–443CrossRefADSGoogle Scholar
  47. Pais, Abraham. 1991. Niels Bohr’s Times, in Physics, Philosophy, and Polity. Oxford: Clarendon PressGoogle Scholar
  48. Petruccioli, Sandro. 1993. Atoms, Metaphors and Paradoxes: Niels Bohr and the Construction of a New Physics. Cambridge: Cambridge University PressGoogle Scholar
  49. Planck, Max. 1915. Bemerkungen über die Emission von Spektrallinien. Sitzungsb. Preuss. Akad. Wiss. Berlin, 909–913Google Scholar
  50. Reid, Constance. 1976. Courant in Göttingen and New York. The Story of an Improbable Mathematician. New York: Springer-VerlagGoogle Scholar
  51. Riecke, Eduard. 1915. Bohrs Theorie der Serienspektren von Wasserstoff und Helium. Phys. Zs. 16: 222–227Google Scholar
  52. Robertson, Peter. 1979. The Early Years: The Niels Bohr Institute 1921–1930. Copenhagen: Akademisk ForlagGoogle Scholar
  53. Robotti, Nadia. 1983. The spectrum of ξ Puppis and the historical evolution of empirical data. Hist. Stud. Phys. Sci. 14: 123–146Google Scholar
  54. Rud Nielsen, Jens. 1972. Niels Bohr. Collected Works, Vol. 1. Amsterdam: North-HollandGoogle Scholar
  55. Rud Nielsen, Jens. 1976. Niels Bohr. Collected Works, Vol. 3. Amsterdam: North-HollandGoogle Scholar
  56. Russell, Bertrand. 1923. The ABC of Atoms. London: Routledge & Kegan PaulGoogle Scholar
  57. Schott, George A. 1918. On Bohr’s hypothesis of stationary states of motion and the radiation from an accelerated electron. Philos. Mag. 36: 243–261Google Scholar
  58. Silberstein, Ludwik. 1920. Report on the Quantum Theory of Spectra. London: Adam HilgerGoogle Scholar
  59. Smekal, Adolf. 1921. Über Stark’s Kritik der Bohrschen Theorie der Lichtemission. Verh. Deutsch. Phys. Gesells. 2: 20–22Google Scholar
  60. Sommerfeld, Arnold. 1921. Zur Kritik der Bohrschen Theorie der Licht-Emission. Jahrb. Rad. Elektr. 17: 417–429Google Scholar
  61. Sommerfeld, Arnold. 1924. Grundlagen der Quantentheorie und des Bohrschen Atommodelles. Naturwissenschaften 12: 1047–1049CrossRefADSGoogle Scholar
  62. Stark, Johannes. 1914. Elektrische Spektralanalyse Chemischer Atome. Leipzig: HirzelGoogle Scholar
  63. Stark, Johannes. 1916. Tatsachen und Folgerungen über Zahl und Koppelung von Elektronen im Wasserstoffatom. Ann. Phys. 50: 53–88CrossRefGoogle Scholar
  64. Stark, Johannes. 1917. Erfahrung und Bohrsche Theorie der Wasserstoffspektren. Ann. Phys. 54: 111–116CrossRefGoogle Scholar
  65. Stark, Johannes. 1920. Zur Kritik der Bohrschen Theorie der Lichtemission. Jahrb. Rad. Elektr. 17: 161–173Google Scholar
  66. Stark, Johannes. 1922. Die Gegenwärtige Krisis in der Deutschen Physik. Leipzig: J. A. BarthGoogle Scholar
  67. Stark, Johannes. 1930. Die Kausalität im Verhalten des Elektrons. Ann. Phys. 6: 681–699CrossRefzbMATHGoogle Scholar
  68. Stark, Johannes. 1945. Erinnerungen eines Deutschen Naturforschers, edited and annotated by Andreas Kleinert. Mannheim: Bionomica-VerlagGoogle Scholar
  69. Stolzenburg, Klaus. 1984. Niels Bohr. Collected Works, Vol. 5. Amsterdam: North-HollandGoogle Scholar
  70. Thomson, Joseph J. 1919. On the origin of spectra and Planck’s law. Philos. Mag. 37: 419–446Google Scholar
  71. Tolman, Richard C. 1922. Review of the present status of the two forms of quantum theory. J. Opt. Soc. Am. Rev. Sci. Instr. 6: 211–228CrossRefADSGoogle Scholar
  72. Warburg, Emil. 1913. Bemerkungen zu der Aufspaltung der Spektrallinien im elektrischen Feld. Verh. Deutsch. Physik. Gesells. 15: 1259–1266Google Scholar
  73. Warwick, Andrew. 1993. Frequency, theorem and formula: Remembering Joseph Larmor in electromagnetic theory. Notes and Records Roy. Soc. 47: 49–60CrossRefzbMATHMathSciNetGoogle Scholar
  74. Wereide, Thorstein. 1915. Statistical Theory of Energy and Matter. Oslo: GyldendalGoogle Scholar
  75. Wereide, Thorstein. 1917. Maxwells Gleichungen und die Atomstrahlung. Ann. Phys. 52: 276–282CrossRefGoogle Scholar
  76. Whittaker, Edmund T. 1922. On the quantum mechanism in the atom. Proc. Roy. Soc., Edinburgh 42: 129–146Google Scholar
  77. Wien, Wilhelm. 1915. Theorie der Wärmestrahlung. In Physik, Part 3.3.1 of Die Kultur der Gegenwart, edited by Emil Warburg, pp. 209–222. Leipzig: B.G. TeubnerGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Centre for Science StudiesAarhus UniversityAarhusDenmark

Personalised recommendations