The European Physical Journal H

, 36:245

JETS and QCD: a historical review of the discovery of the quark and gluon jets and its impact on QCD

Review

Abstract

The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review, which is primarily a description of the discovery of the quark and gluon jets and the impact of their observation on Quantum Chromodynamics, we elaborate, in particular, the role of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e+e collisions will be in the foreground of the discussion and we will concentrate on the theory that was contemporary with the relevant experiments at the electron-positron colliders. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and \hbox{$pp/p\bar{p}$}pp / p collisions  −  quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W ± , Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics.

References

  1. 1.
    H. Fritzsch, M. Gell-Mann, Current Algebra: Quarks and What Else? Proceedings, 16th Int. Conference on High Energy Physics, Batavia IL, eConf C720906V2: 135-165 (1972)Google Scholar
  2. 2.
    H. Fritzsch, M. Gell-Mann, H. Leutwyler, Advantages of the Color Octet Gluon Picture, Phys. Lett. B 47, 365 (1973)ADSGoogle Scholar
  3. 3.
    D.J. Gross, F. Wilczek, Ultraviolet Behavior of Non-Abelien Gauge Theories, Phys. Rev. Lett. 30, 1343 (1973) ADSGoogle Scholar
  4. 4.
    H.D. Politzer , Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett. 30, 1346 (1973)ADSGoogle Scholar
  5. 5.
    M. Gell-Mann, A Schematic Model of Baryons and Mesons, Phys. Lett. 8, 214 (1964)ADSGoogle Scholar
  6. 6.
    G. Zweig, An SU(3) Model for Strong Interaction Symmetry and its Breaking, CERN-TH-401 (1964)Google Scholar
  7. 7.
    K. Nakamura et al., [Particle Data Group], Review of Particle Physics, J. Phys. G 37, 075021 (2010) ADSGoogle Scholar
  8. 8.
    O.W. Greenberg, Spin and Unitary Spin Independence in a Paraquark Model of Baryons and Mesons, Phys. Rev. Lett. 13, 598 (1964)ADSGoogle Scholar
  9. 9.
    M.Y. Han, Y. Nambu, Three-triplet Model with Double SU(3) Symmetry, Phys. Rev. 139, B1006 (1965) MathSciNetADSGoogle Scholar
  10. 10.
    M. Gell-Mann, Quarks, Acta Phys. Austr. Suppl. IX, 733 (1972)Google Scholar
  11. 11.
    Y. Nambu, A Systematics of Hadrons in Subnuclear Physics, in Preludes in theoretical physics, North-Holland Publishing Company, Amsterdam (1966)Google Scholar
  12. 12.
    C.N. Yang, R.L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Phys. Rev. 96, 191 (1954)MathSciNetADSGoogle Scholar
  13. 13.
    K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10, 2445 (1974) ADSGoogle Scholar
  14. 14.
    C.H. Llewellyn Smith , Inelastic Lepton Scattering in Gluon Models, Phys. Rev. D 4, 2392 (1971)ADSGoogle Scholar
  15. 15.
    D.J. Gross, How to Test Scaling in Asymptotically Free Theories, Phys. Rev. Lett. 32, 1071 (1974) ADSGoogle Scholar
  16. 16.
    R.P. Feynman, The Behavior of Hadron Collisions at Extreme Energies, in Proceedings of the 3rd Topical Conference on High Energy Collision of Hadrons (Stony Brook, New York, 237, 1969) Google Scholar
  17. 17.
    R.M. Barnett et al. [Particle Data Group], Review of particle physics. Particle Data Group, Phys. Rev. D 54, 1 (1996) Google Scholar
  18. 18.
    N. Cabibbo , G. Parisi , M. Testa , Hadron Production in e+e− Collisions, Lett. Nuovo Cim. 4S1, 35 (1970) [Lett. Nuovo Cim. 4, 35 (1970)] Google Scholar
  19. 19.
    S.D. Drell, D.J. Levy, T.M. Yan, Theory of Deep-Inelastic Lepton-Nucleon Scattering and Lepton-Pair Annihilation Processes, iii: Deep-Inelastic Electron-Positron Annihilation, Phys. Rev. D 1, 1617 (1970)ADSGoogle Scholar
  20. 20.
    S.M. Berman, J.D. Bjorken, J.B. Kogut, Inclusive Processes at High Transverse Momentum, Phys. Rev. D 4, 3388 (1971)ADSGoogle Scholar
  21. 21.
    G. Hanson et al. [SLAC-LBL Collaboration], Evidence for Jet Structure in Hadron Production by e+e− Annihilation, Phys. Rev. Lett. 35, 1609 (1975)ADSGoogle Scholar
  22. 22.
    G. Hanson et al. Hadron Production by e+e− Annihilation at Center-of-Mass Energies between 2.6 GeV and 7.8 GeV, Part 2: Jet Structure and Related Inclusive Distributions, Phys. Rev. D 26, 991 (1982)ADSGoogle Scholar
  23. 23.
    J.D. Bjorken, S.J. Brodsky, Statistical Model for Electron-Positron Annihilation into Hadrons, Phys. Rev. D 1, 1416 (1970)ADSGoogle Scholar
  24. 24.
    Ch. Berger et al. [PLUTO Collaboration], Jet Analysis of the Upsilon(9.46) Decay into Charged Hadrons, Phys. Lett. B 82, 449 (1979)ADSGoogle Scholar
  25. 25.
    R. Brandelik et al. [TASSO Collaboration], Evidence for Planar Events in e+e− Annihilation at High Energies, Phys. Lett. B 86, 243 (1979)ADSGoogle Scholar
  26. 26.
    D.P. Barber et al. [Mark-J Collaboration], Discovery of Three Jet Events and a Test of Quantum Chromodynamics at Petra Energies, Phys. Rev. Lett. 43, 830 (1979)ADSGoogle Scholar
  27. 27.
    C. Berger et al. [PLUTO Collaboration], Evidence for Gluon Bremsstrahlung in e+e− Annihilations at High-Energies, Phys. Lett. B 86, 418 (1979)ADSGoogle Scholar
  28. 28.
    W. Bartel et al. [JADE Collaboration], Observation of Planar Three Jet Events in e+e− Annihilation and Evidence for Gluon Bremsstrahlung, Phys. Lett. B 91, 142 (1980) ADSGoogle Scholar
  29. 29.
    B.H. Wiik, First Results From Petra, in Bergen 1979, Proceedings, Neutrino ’79, Vol.1, p. 113Google Scholar
  30. 30.
    J.R. Ellis, M.K. Gaillard, G.G. Ross, Search for Gluons in e+e− Annihilation, Nucl. Phys. B 111, 253 (1976) [Erratum-ibid. B 130, 516 (1977)]ADSGoogle Scholar
  31. 31.
    P. Hoyer, P. Osland, H.G. Sander, T.F. Walsh, P.M. Zerwas, Quantum Chromodynamics and Jets in e+e−, Nucl. Phys. B 161, 349 (1979) ADSGoogle Scholar
  32. 32.
    A. Ali, E. Pietarinen, G. Kramer, J. Willrodt, A QCD Analysis of the High-Energy e+e- Data from Petra, Phys. Lett. B 93, 155 (1980)ADSGoogle Scholar
  33. 33.
    M.L. Mangano, T.J. Stelzer, Tools for the simulation of hard hadronic collisions, Ann. Rev. Nucl. Part. Sci. 55, 555 (2005)ADSGoogle Scholar
  34. 34.
    S. Bethke, QCD studies at LEP, Phys. Rept. 403-404, 203 (2004) ADSGoogle Scholar
  35. 35.
    A. Breakstone et al. [Ames-Bologna-CERN-Dortmund-Heidelberg-Warsaw Collaboration], High P T Hadrons as Leading Particles in Jets Produced at the ISR. 1. Momentum Distribution of Secondaries in the Trigger Jet, Z. Phys. C 23, 9 (1984)ADSGoogle Scholar
  36. 36.
    W.G. Scott [UA1 Collaboration], Jets in the UA1 Experiment, in Berne 1984, Proceedings, Proton Antiproton Collider Physics, p. 6Google Scholar
  37. 37.
    R.D. Field, R.P. Feynman, A Parametrization of the Properties of Quark Jets, Nucl. Phys. B 136, 1 (1978)ADSGoogle Scholar
  38. 38.
    B. Andersson, G. Gustafson, T. Sjostrand, A Three-Dimensional Model for Quark and Gluon Jets, Z. Phys. C 6, 235 (1980)ADSGoogle Scholar
  39. 39.
    G. Marchesini, B.R. Webber, Simulation of QCD Jets including Soft Gluon Interference, Nucl. Phys. B 238, 1 (1984)ADSGoogle Scholar
  40. 40.
    S.L. Wu, G. Zobernig, A Method of Three Jet Analysis in e+e− Annihilation, Z. Phys. C 2, 107 (1979)ADSGoogle Scholar
  41. 41.
    K. Lanius, Cluster Methods of Jet Analysis, DESY Report 80/36 (1980)Google Scholar
  42. 42.
    K. Lanius, H.E. Roloff, H. Schiller, Selection of Jets in Multi – Hadron Final States Produced by e+e− Annihilation, Z. Phys. C 8, 251 (1981)ADSGoogle Scholar
  43. 43.
    H.J. Daum, H. Meyer, J. Bürger, A Cluster Algorithm for Jet Studies, Z. Phys. C 8, 167 (1981)ADSGoogle Scholar
  44. 44.
    W. Bartel et al. [JADE Collaboration], Experimental Studies on Multi-jet Production in e+e− Annihilation, Z. Phys. C 33, 23 (1986)ADSGoogle Scholar
  45. 45.
    G. Sterman, S. Weinberg, Jets from Quantum Chromodynamics, Phys. Rev. Lett. 39, 1436 (1977) ADSGoogle Scholar
  46. 46.
    G.F. Sterman, Zero Mass Limit For A Class Of Jet Related Cross-sections, Phys. Rev. D 19, 3135 (1979) ADSGoogle Scholar
  47. 47.
    B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Parton Fragmentation and String Dynamics, Phys. Rept. 97, 31 (1983)ADSGoogle Scholar
  48. 48.
    Y.I. Azimov, Y.L. Dokshitzer, V.A. Khoze, S.I. Troian, The String Effect and QCD Coherence, Phys. Lett. B 165, 147 (1985) ADSGoogle Scholar
  49. 49.
    T. Sjostrand, PYTHIA 8 Status Report [arXiv:0809.0303] [hep-ph]Google Scholar
  50. 50.
    T. Sjostrand, S. Mrenna, P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178, 852 (2008) ADSGoogle Scholar
  51. 51.
    M. Bähr et al., Herwig++ Status Report, Eur. Phys. J. C 58, 639 (2008)ADSGoogle Scholar
  52. 52.
    T. Gleisberg, S. Hoche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, J. Winter, Event Generation with SHERPA 1.1, JHEP 0902, 007 (2009) ADSGoogle Scholar
  53. 53.
    G. Kramer, Theory of Jets in Electron-Positron Annihilation, Tracts in Modern Physics, No. 102 (Springer, 1984)Google Scholar
  54. 54.
    A. Ali, P. Söding, High Energy Electron-Positron Physics, World Scientific (1988)Google Scholar
  55. 55.
    R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics (Cambridge University Press, 1996)Google Scholar
  56. 56.
    G.S. Bali, H. Neff, T. Duessel, T. Lippert, K. Schilling [SESAM Collaboration], Observation of String Breaking in QCD, Phys. Rev. D 71, 114513 (2005) ADSGoogle Scholar
  57. 57.
    G. Abbiendi et al. [OPAL Collaboration], Leading particle production in light flavor jets, Eur. Phys. J. C 16, 407 (2000) ADSGoogle Scholar
  58. 58.
    S. Albino, B.A. Kniehl, G. Kramer, Fragmentation functions for light charged hadrons with complete quark flavor separation, Nucl. Phys. B 725, 181 (2005) ADSGoogle Scholar
  59. 59.
    D.H. Saxon, in reference [54]Google Scholar
  60. 60.
    S. Albino, The Hadronization of Partons, Rev. Mod. Phys. 82, 2489 (2010) ADSGoogle Scholar
  61. 61.
    Ya.I. Azimov, L.L. Frankfurt, V.A. Khoze, On Reaction e+e− →  Hadrons, New Particles and e+e− Annihilation (in Russian), Leningrad 76-222 (1976)Google Scholar
  62. 62.
    J.D. Bjorken, Properties of Hadron Distributions in Reactions Containing Very Heavy Quarks, Phys. Rev. D 17, 171 (1978)ADSGoogle Scholar
  63. 63.
    C. Peterson, D. Schlatter, I. Schmitt, P.M. Zerwas, Scaling Violations in Inclusive e+e− Annihilation Spectra, Phys. Rev. D 27, 105 (1983)ADSGoogle Scholar
  64. 64.
    B. Mele, P. Nason, The Fragmentation function for heavy quarks in QCD, Nucl. Phys. B 361, 626 (1991) ADSGoogle Scholar
  65. 65.
    J.P. Ma, Perturbative prediction for parton fragmentation into heavy hadron, Nucl. Phys. B 506, 329 (1997) ADSGoogle Scholar
  66. 66.
    P. Nason, C. Oleari, A Phenomenological Study of Heavy-Quark Fragmentation Functions in e+e- Annihilation, Nucl. Phys. B 565, 245 (2000) ADSGoogle Scholar
  67. 67.
    M. Cacciari, P. Nason, C. Oleari, A Study of Heavy Flavoured Meson Fragmentation Functions in e+e- Annihilation, JHEP 0604, 006 (2006) ADSGoogle Scholar
  68. 68.
    T. Kneesch, B.A. Kniehl, G. Kramer, I. Schienbein, Charmed-meson fragmentation functions with finite-mass corrections, Nucl. Phys. B 799, 34 (2008)ADSMATHGoogle Scholar
  69. 69.
    B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Finite-mass effects on inclusive B meson hadroproduction, Phys. Rev. D 77, 014011 (2008) ADSGoogle Scholar
  70. 70.
    D. Amati, G. Veneziano, Preconfinement as a Property of Perturbative QCD, Phys. Lett. B 83, 87 (1979)ADSGoogle Scholar
  71. 71.
    V.V. Sudakov, Vertex Parts at Very High-Energies in Quantum Electrodynamics, Sov. Phys. JETP 3, 65 (1956) [Zh. Eksp. Teor. Fiz. 30, 87 (1956)]MathSciNetMATHGoogle Scholar
  72. 72.
    G. Alexander, Proceedings of the XIXth International Conference On High Energy Physics (Tokyo, 1978), p. 255 Google Scholar
  73. 73.
    S. Brandt, C. Peyrou, R. Sosnowski, A. Wroblewski, The Principal Axis of Jets: An Attempt to Analyze High-energy Collisions as Two-body Processes, Phys. Lett. 12, 57 (1964)ADSGoogle Scholar
  74. 74.
    E. Fahri, A QCD Test for Jets, Phys. Rev. Lett. 39, 1587 (1977) ADSGoogle Scholar
  75. 75.
    S. Brandt, H.J. Dahmen, Axes and Scalar Measures of Two-Jet and Three-Jet Events, Z. Phys. C 1, 61 (1979)ADSGoogle Scholar
  76. 76.
    O. Nachtmann, A. Reiter, A New Quantity for Finding Four-Jet Events in Electron-Positron Annihilation into Hadrons, Z. Phys. C 14, 47 (1982)ADSGoogle Scholar
  77. 77.
    G.P. Salam, Towards Jetography, Eur. Phys. J. C 67, 637 (2010)ADSGoogle Scholar
  78. 78.
    S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock, B.R. Webber, New Clustering Algorithm for Multi – Jet Cross-sections in e+e- Annihilation, Phys. Lett. B 269, 432 (1991) ADSGoogle Scholar
  79. 79.
    S.D. Ellis, D.E. Soper, Successive Combination Jet Algorithm for Hadron Collisions, Phys. Rev. D 48, 3160 (1993) ADSGoogle Scholar
  80. 80.
    S. Catani et al., Longitudinally Invariant k t Clustering Algorithms for Hadron Hadron Collisions, Nucl. Phys. B 406, 187 (1993) ADSGoogle Scholar
  81. 81.
    M. Wobisch, T. Wengler, Hadronization Corrections to Jet Cross Sections in Deep-Inelastic Scattering (1999) [arXiv:hep-ph/9907280] Google Scholar
  82. 82.
    M. Cacciari, G.P. Salam, G. Soyez, The Anti-k t Jet Clustering Algorithm, JHEP 0804, 063 (2008) ADSGoogle Scholar
  83. 83.
    G.C. Blazey et al., Run II Jet Physics (2000) [arXiv:hep-ex/0005012]Google Scholar
  84. 84.
    J.E. Huth et al., Toward a Standardization of Jet Definitions, FERMILAB-CONF-90-249-E (1990), Published in Snowmass Summer Study 1990:0134-136 (QCD161:D15:1990)Google Scholar
  85. 85.
    M.H. Seymour, Jet shapes in hadron collisions: Higher orders, resummation and hadronization, Nucl. Phys. B 513, 269 (1998) ADSGoogle Scholar
  86. 86.
    R.P. Feynman, Photon-Hadron-Interactions (Benjamin, Reading, 1972)Google Scholar
  87. 87.
    R. Gatto, Proceedings of the International Symposium on Electron and Photon Interactions at High Energies, edited by G. Höhler, G. Kramer, U. Meyer-Berkhout, 1, 106 (Deutsche Physikalische Gesellschaft e. V., Hamburg 1965)Google Scholar
  88. 88.
    Ch. Berger et al. [PLUTO Collaboration], A Study of Jets in Electron Positron Annihilations into Hadrons in the Energy Range 3.1 GeV to 9.5 GeV, Phys. Lett. B 78, 176 (1978)ADSGoogle Scholar
  89. 89.
    E. Elsen, Multi-Hadron Production in e+e− Annihilation at Petra Energies and Comparison with Quantum Chromodynamics (in German), Interner Bericht DESY F22-81/02 (1981)Google Scholar
  90. 90.
    C.G. Callan, D.J. Gross, High-Energy Electroproduction and the Constitution of the Electric Current, Phys. Rev. Lett. 22, 156 (1969)ADSGoogle Scholar
  91. 91.
    T.D. Lee, M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev. 133, B1549 (1964) MathSciNetADSGoogle Scholar
  92. 92.
    P.M. Stevenson, Comments on Sterman-Weinberg Jet Formula, Phys. Lett. B 78, 451 (1978)ADSGoogle Scholar
  93. 93.
    G. Kramer, B. Lampe, Two-Jet Cross-Section in e+e- Annihilation, Z. Phys. C 34, 497 (1987) [Erratum-ibid. C 42, 504 (1989)]ADSGoogle Scholar
  94. 94.
    W. Bartel et al. [JADE Collaboration], Experimental Studies on Multi-Jet Production in e+e− Annihilation at PETRA Energies, Z. Phys. C 33, 23 (1986)ADSGoogle Scholar
  95. 95.
    S.W. Herb et al., Observation of a Dimuon Resonance at 9.5 GeV in 400 GeV Proton-Nucleus Collisions, Phys. Rev. Lett. 39, 252 (1979)ADSGoogle Scholar
  96. 96.
    W.R. Innes et al., Observation of Structure in the Upsilon Region, Phys. Rev. Lett. 39, 1240 (1979) ADSGoogle Scholar
  97. 97.
    Ch. Berger et al. [PLUTO Collaboration], Observation of a Narrow Resonance in e+e− Annihilation at 9.46 GeV, Phys. Lett. B 76, 243 (1978)ADSGoogle Scholar
  98. 98.
    Ch. Berger et al. [PLUTO Collaboration], Determination of the Electronic Branching Ratio of the Upsilon(9.46) and an Upper Limit for its Total Width, Phys. Lett. B 93, 497 (1980)ADSGoogle Scholar
  99. 99.
    C.W. Darden et al., Observation of a Narrow Resonance at 9.46 GeV in Electron-Positron Annihilation, Phys. Lett. B 76, 246 (1978)ADSGoogle Scholar
  100. 100.
    J.K. Bienlein et al., Observation of a Narrow Resonance at 10.02 GeV in e+e- Annihilations, Phys. Lett. B 78, 360 (1978)ADSGoogle Scholar
  101. 101.
    D. Andrews et al. [CLEO Collaboration], Observation of Three Upsilon States, Phys. Rev. Lett. 44, 1108 (1980) ADSGoogle Scholar
  102. 102.
    T. Böhringer et al., Observation of Upsilon, Upsilon′ and Upsilon′′ at the Cornell Storage Ring, Phys. Rev. Lett. 44, 1111 (1980) ADSGoogle Scholar
  103. 103.
    T. Appelquist, H.D. Politzer, Orthocharmonium and e+e- Annihilation, Phys. Rev. Lett. 34, 43 (1975)ADSGoogle Scholar
  104. 104.
    T. Appelquist, H.D. Politzer, Heavy Quarks and Long-lived Hadrons, Phys. Rev. D 12, 1404 (1975) ADSGoogle Scholar
  105. 105.
    K. Koller, T.F. Walsh, Three Gluon Jets as a Test of QCD, Phys. Lett. B 72, 227 (1977)ADSGoogle Scholar
  106. 106.
    K. Koller, T.F. Walsh, Gluons in Quarkonium Decay, Nucl. Phys. B 140, 449 (1978) ADSGoogle Scholar
  107. 107.
    K. Koller, H. Krasemann, T.F. Walsh, The 3 Gluon Decay of Quarkonium, Z. Phys. C 1, 71 (1979)ADSGoogle Scholar
  108. 108.
    T.A. DeGrand, Y.G. Ng., S.H.H. Tye, Jet Structure in e+e- Annihilation as a Test of QCD and the Quark-Confining String, Phys. Rev. D 16, 3251 (1977) ADSGoogle Scholar
  109. 109.
    A. de Rujula, J. Ellis, E.G. Floratos, M.K. Gaillard, QCD Predictions for Hadronic Final States in e+e- Annihilation, Nucl. Phys. B 138, 387 (1978) ADSGoogle Scholar
  110. 110.
    A. Ore, J.L. Powell, Three Photon Annihilation of an Electron-Positron Pair, Phys. Rev. 75, 1696 (1949) ADSMATHGoogle Scholar
  111. 111.
    Ch. Berger et al. [PLUTO Collaboration], Topology of the Upsilon Decay, Z. Phys. C 8, 101 (1981)ADSGoogle Scholar
  112. 112.
    B.R. Stella, H.J. Meyer, Υ(9.46GeV) and the Gluon Discovery (A critical recollection of PLUTO results), Report DESY-10-130 (revised) [to appear in Eur. Phys. J. H], [arXiv:1008.1869 [hep-ex]] (2010)Google Scholar
  113. 113.
    K. Koller, H. Krasemann, Excluding Scalar Gluons, Phys. Lett. B 88, 119 (1979)ADSGoogle Scholar
  114. 114.
    T.F. Walsh, P.M. Zerwas, Upsilon(9.46) Decays Do Test QCD, Phys. Lett. B 93, 53 (1980)ADSGoogle Scholar
  115. 115.
    B. Niczyporuk et al. [LENA Collaboration], Charged Hadron Production in e+e− Annihilation in the Upsilon and Upsilon′ Region, Z. Phys. C 9, 1 (1981)ADSGoogle Scholar
  116. 116.
    K. Berkelman, Upsilon Spectroscopy at CESR, Phys. Rep. 98, 145 (1983)ADSGoogle Scholar
  117. 117.
    H. Albrecht et al. [ARGUS Collaboration], An Upper Limit for Two-Jet Production in Direct Upsilon(1S) Decays, Z. Phys. C 31, 181 (1986)ADSGoogle Scholar
  118. 118.
    G. Gidal, B. Armstrong, A. Rittenberg, “Major Detectors in Elementary Particle Physics”, LBL 91-Supplement (March 1983; updated May 1985)Google Scholar
  119. 119.
    H.L. Lynch, “Detectors for High Energy e+e− Physics”, in reference [54]Google Scholar
  120. 120.
    H. Georgi, D.V. Nanopoulos, t-Quark Mass in a Superunified Theory, Phys. Lett. B 82, 392 (1979)ADSGoogle Scholar
  121. 121.
    H. Fritzsch, Quark Masses and Flavor Mixing, Nucl. Phys. B 155, 189 (1979) ADSGoogle Scholar
  122. 122.
    R. Brandelik et al. [TASSO Collaboration], e+e− Annihilation at High-Energies and Search for the t-Quark Continuum Contribution, Z. Phys. C 4, 87 (1980)ADSGoogle Scholar
  123. 123.
    C. Berger et al. [PLUTO Collaboration], Search for a “Top” Threshold in Hadronic e+e− Annihilation at Energies between 22 GeV and 31.6 GeV, Phys. Lett. B 86, 413 (1979) ADSGoogle Scholar
  124. 124.
    N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10, 531 (1963)ADSGoogle Scholar
  125. 125.
    M. Kobayashi, T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49, 652 (1973)ADSGoogle Scholar
  126. 126.
    [Tevatron Electroweak Working Group and CDF and D0 Collaboration], Combination of CDF and D0 Results on the Mass of the Top Quark, FERMILAB-TM-2427-E, TEVEWWG-TOP-2009-03, CDF-NOTE-9717, D0-NOTE-5899, [arXiv:0903.2503 [hep-ex]] (2009)Google Scholar
  127. 127.
    A. Ali, J.G. Körner, J. Willrodt, G. Kramer, Indications of \hbox{$b \bar{b}$} b Production, Decay at Petra, Phys. Lett. B 83, 375 (1979)ADSGoogle Scholar
  128. 128.
    C. Berger et al. [PLUTO Collaboration], Cross-Sections and Event Topologies in e+e− Annihilation at 13 GeV and 17 GeV Observed with the Pluto Detector, Phys. Lett. B 81, 410 (1979) ADSGoogle Scholar
  129. 129.
    R. Brandelik et al. [TASSO Collaboration], Properties of Hadron final States in e+e− Annihilation at 13 GeV and 17 GeV Center-of-Mass Energies, Phys. Lett. B 83, 261 (1979) ADSGoogle Scholar
  130. 130.
    A. Ali, J.G. Körner, G. Kramer, J. Willrodt, Jet-Like Distributions from the Weak Decay of Heavy Quarks, Z. Phys. C 1, 203 (1979)ADSGoogle Scholar
  131. 131.
    A. Ali, J.G. Körner, G. Kramer, J. Willrodt, Nonleptonic Weak Decays of Bottom Mesons, Z. Phys. C 1, 269 (1979)ADSGoogle Scholar
  132. 132.
    H. Schopper, First Results from PETRA Provide New Aspects of the Basic Structure of Matter, Naturwiss. 67, 161 (1980)ADSGoogle Scholar
  133. 133.
    S.L. Wu, Hadron Jets and the Discovery of the Gluon, in the Proceedings of 3rd International Symposium on the History of Particle Physics: The Rise of the Standard Model, Stanford, California, 24-27 Jun 1992, p. 600Google Scholar
  134. 134.
    J.G. Branson, Gluon Jets, Talk given at International Conference on the History of Original Ideas and Basic Discoveries in Particle Physics, Erice, Italy, 29 Jul.–4 Aug. (1994)Google Scholar
  135. 135.
    P. Söding, B. Wiik, G. Wolf, S.L. Wu, The First Evidence for Three-Jet Events in e+e− Collisions at PETRA: First Direct Observation of the Gluon, Talk given at Award Ceremony of the 1995 EPS High Energy and Particle Physics Prize. Brussels, Belgium, 27 Jul.–2 Aug. 1995, Report DESY-96-193 (1996) Published in Brussels EPS HEP 1995:3-14 (QCD161:I48:1995) Google Scholar
  136. 136.
    J. Ellis , Those were the Days: Discovering the Gluon, CERN Cour. 49N6, 15 (2009)Google Scholar
  137. 137.
    P. Söding, On the Discovery of the Gluon, Eur. Phys. J. H 35, 3 (2010)ADSGoogle Scholar
  138. 138.
    G.C. Fox, S. Wolfram, Observables for the Analysis of Event Shapes in e+e- Annihilation and Other Processes, Phys. Rev. Lett. 41, 1581 (1978) ADSGoogle Scholar
  139. 139.
    J.R. Ellis, I. Karliner, Measuring the Spin of the Gluon in e+e- Annihilation, Nucl. Phys. B 148, 141 (1979) ADSGoogle Scholar
  140. 140.
    A. Ali, J.G. Körner, Z. Kunszt, J. Willrodt, G. Kramer, G. Schierholz, E. Pietarinen, Four-Jet Production in e+e- Annihilation, Phys. Lett. B 82, 285 (1979)ADSGoogle Scholar
  141. 141.
    A. Ali, J.G. Körner, Z. Kunszt, J. Willrodt, G. Kramer, G. Schierholz, E. Pietarinen, QCD Predictions for Four-Jet Final States in e+e- Annihilation, Nucl. Phys. B 167, 454 (1980) ADSGoogle Scholar
  142. 142.
    R.K. Ellis, D.A. Ross, A.E. Terrano, Calculation of Event Shape Parameters in e+e- Annihilation, Phys. Rev. Lett. 45, 1226 (1980) ADSGoogle Scholar
  143. 143.
    R.K. Ellis, D.A. Ross, A.E. Terrano, The Perturbative Calculation of Jet Structure in e+e- Annihilation, Nucl. Phys. B 178, 421 (1981) ADSGoogle Scholar
  144. 144.
    J.A.M. Vermaseren, K.J.F. Gaemers, S.J. Oldham, Perturbative QCD Calculation of Jet Cross-Sections in e+e- Annihilation, Nucl. Phys. B 187, 302 (1981) ADSGoogle Scholar
  145. 145.
    R.K. Ellis, D.A. Ross, On the Thrust Distribution in e+e- Annihilation, Phys. Lett. B 106, 88 (1981)ADSGoogle Scholar
  146. 146.
    Z. Kunszt, Magnitude of the O(α s2) Corrections to Jet Production in e+e- Annihilation, Phys. Lett. B 107, 123 (1981) ADSGoogle Scholar
  147. 147.
    L. Clavelli, D. Wyler, Kinematical Bounds on Jet Variables and the Heavy Jet Mass Distribution, Phys. Lett. B 103, 383 (1981) ADSGoogle Scholar
  148. 148.
    A. Ali, The QCD Effective Coupling Constant in e+e- Annihilation, Phys. Lett. B 110, 67 (1982)ADSGoogle Scholar
  149. 149.
    R. Brandelik et al. [TASSO Collaboration], Comparison of e+e− Annihilation with QCD and Determination of the Strong Coupling Constant, Phys. Lett. B 94, 437 (1980)ADSGoogle Scholar
  150. 150.
    H.B. Newman, Results on Jets, QCD and Lepton Production from the Mark-J. (Talk), AIP Conf. Proc. 68, 627 (1981)ADSGoogle Scholar
  151. 151.
    C.L. Basham, L.S. Brown, S.D. Ellis, S.T. Love, Energy Correlations in Electron – Positron Annihilation: Testing QCD, Phys. Rev. Lett. 41, 1585 (1978) ADSGoogle Scholar
  152. 152.
    C.L. Basham, L.S. Brown, S.D. Ellis, S.T. Love, Energy Correlations in Electron-Positron Annihilation in Quantum Chromodynamics: Asymptotically Free Perturbation Theory, Phys. Rev. D 19, 2018 (1979) ADSGoogle Scholar
  153. 153.
    A. Ali, F. Barreiro, An O(α s2) Calculation of Energy-Energy Correlation in e+e- Annihilation and Comparison with Experimental Data, Phys. Lett. B 118, 155 (1982) ADSGoogle Scholar
  154. 154.
    A. Ali, F. Barreiro, Energy-Energy Correlations in e+e- Annihilation, Nucl. Phys. B 236, 269 (1984) ADSGoogle Scholar
  155. 155.
    F. Csikor, Quark Mass Effects for Energy-Energy Correlations in High-Energy e+e- Annihilation, Phys. Rev. D 30, 28 (1984)ADSGoogle Scholar
  156. 156.
    K.H. Cho, S.K. Han, J.K. Kim, Energy-Energy Correlations in Electron Positron Annihilation: Z Boson and Heavy Quark Effects, Nucl. Phys. B 233, 161 (1984) ADSGoogle Scholar
  157. 157.
    D.G. Richards, W.J. Stirling, S.D. Ellis, Second Order Corrections to the Energy-Energy Correlation Function in Quantum Chromodynamics, Phys. Lett. B 119, 193 (1982) ADSGoogle Scholar
  158. 158.
    D.G. Richards, W.J. Stirling, S.D. Ellis, Energy-Energy Correlations to Second Order in Quantum Chromodynamics, Nucl. Phys. B 229, 317 (1983) ADSGoogle Scholar
  159. 159.
    W. Bartel et al. [JADE Collaboration], Measurements of Energy Correlations in e+e− →  Hadrons, Z. Phys. C 25, 231 (1984)ADSGoogle Scholar
  160. 160.
    B. Adeva et al. [MARK-J Collaboration], A Model Independent Second Order Determination of the Strong Coupling Constant α s, Phys. Rev. Lett. 50, 2051 (1983)ADSGoogle Scholar
  161. 161.
    W. Braunschweig et al. [TASSO Collaboration], A Study Of Energy-Energy Correlations between 12 GeV and 46.8 GeV CM Energies, Z. Phys. C 36, 349 (1987)ADSGoogle Scholar
  162. 162.
    C. Berger et al. [PLUTO Collaboration], A Study of Energy-Energy Correlations in e+e− Annihilations at √s = 34.6 GeV, Z. Phys. C 28, 365 (1985)ADSGoogle Scholar
  163. 163.
    K. Fabricius, I. Schmitt, G. Schierholz, G. Kramer, Order α s2 Correction to Jet Cross-Sections in e+e- Annihilation, Phys. Lett. B 97, 431 (1980)ADSGoogle Scholar
  164. 164.
    K. Fabricius, I. Schmitt, G. Schierholz, G. Kramer, Higher Order Perturbative QCD Calculation of Jet Cross-Sections in e + e- Annihilation, Z. Phys. C 11, 315 (1981)ADSGoogle Scholar
  165. 165.
    F. Gutbrod, G. Kramer, G. Schierholz, Higher Order QCD Corrections to the Three-Jet Cross-Sections: Bare Versus Dressed Jets, Z. Phys. C 21, 235 (1984)ADSGoogle Scholar
  166. 166.
    G. Kramer, B. Lampe, Jet Cross-Sections in e+e- Annihilation, Fortsch. Phys. 37, 161 (1989)ADSGoogle Scholar
  167. 167.
    F. Gutbrod, G. Kramer, G. Rudolph, G. Schierholz, Recombination Dependence of the O(α s2) Three-Jet Cross-Section in e+e- Annihilation, Z. Phys. C 35, 543 (1987)ADSGoogle Scholar
  168. 168.
    S. Bethke et al. [JADE Collaboration], Experimental Investigation of the Energy Dependence of the Strong Coupling Strength, Phys. Lett. B 213, 235 (1988)ADSGoogle Scholar
  169. 169.
    T.D. Gottschalk, M.P. Shatz, A Reassessment of the O(α s2) Three-Jet Cross-Section for e+e- Annihilation, Phys. Lett. B 150, 451 (1985) ADSGoogle Scholar
  170. 170.
    W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories, Phys. Rev. D 18, 3998 (1978) ADSGoogle Scholar
  171. 171.
    R. Brock et al. [CTEQ Collaboration], Handbook of perturbative QCD: Version 1.0, Rev. Mod. Phys. 67, 157 (1995) Google Scholar
  172. 172.
    S. Komamiya et al., Determination of α s from a Differential Jet Multiplicity Distribution at SLC and PEP, Phys. Rev. Lett. 64, 987 (1990)ADSGoogle Scholar
  173. 173.
    S. Bethke et al., Studies of Jet Production Rates in e+e- Annihilation at E(cm) = 29 GeV, Z. Phys. C 43, 325 (1989)ADSGoogle Scholar
  174. 174.
    S. Bethke, An Experimental Approach to Optimize and Test Perturbative QCD to O(α s2), Z. Phys. C 43, 331 (1989)ADSGoogle Scholar
  175. 175.
    I.H. Park et al. [AMY Collaboration], Experimental Evidence for the Non-Abelian Nature of QCD, Phys. Rev. Lett. 62, 1713 (1989) ADSGoogle Scholar
  176. 176.
    W. Braunschweig et al. [TASSO Collaboration], Analysis of Multi-Jet Final States in e+e− Annihilation, Phys. Lett. B 214, 286 (1988)ADSGoogle Scholar
  177. 177.
    B. Löhr et al., Variation of the Strong Coupling Constant from a Measurement of the Jet Energy Spread in e+e- Annihilation, Phys. Lett. B 122, 90 (1983)ADSGoogle Scholar
  178. 178.
    H.J. Behrend et al. [CELLO Collaboration], Model Independent Limits on ΛQCD from e+e− Annihilation in the Energy Range from 14 GeV to 46 GeV, Z. Phys. C 44, 63 (1989) Google Scholar
  179. 179.
    W. Bartel et al. [JADE Collaboration], Experimental Study of Jets in Electron – Positron Annihilation, Phys. Lett. B 101, 129 (1981)ADSGoogle Scholar
  180. 180.
    W. Bartel et al. [JADE Collaboration], Test of Fragmentation Models by Comparison with Three-Jet Events Produced in e+e− →  Hadrons, Phys. Lett. B 134, 275 (1984)ADSGoogle Scholar
  181. 181.
    H. Aihara et al.[TPC/Two Gamma Collaboration], Tests of Models for Quark and Gluon Fragmentation in e+e− Annihilation at √s = 29 GeV, Z. Phys. C 28, 31 (1985)ADSGoogle Scholar
  182. 182.
    M. Althoff et al. [TASSO Collaboration], A Study of Three-Jet Events in e+e− Annihilation into Hadrons at 34.6 GeV Center-of-Mass Energy, Z. Phys. C 29, 29 (1985)ADSGoogle Scholar
  183. 183.
    P.D. Sheldon et al., A Comparison of the Particle Flow in Three-Jet and Radiative Two-Jet Events from e+e- Annihilation at E(cm) = 29 GeV, Phys. Rev. Lett. 57, 1398 (1986) ADSGoogle Scholar
  184. 184.
    G. Altarelli, G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126, 298 (1977) ADSGoogle Scholar
  185. 185.
    L.N. Lipatov, The Parton Model and Perturbation Theory, Sov. J. Nucl. Phys. 20, 94 (1975) [Yad. Fiz. 20, 181 (1974)]Google Scholar
  186. 186.
    V.N. Gribov, L.N. Lipatov, Deep Inelastic ep Scattering in Perturbation Theory, Sov. J. Nucl. Phys. 15, 438 (1972) [Yad. Fiz. 15, 781 (1972)]Google Scholar
  187. 187.
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+e- Annihilation by Perturbation Theory in Quantum Chromodynamics, Sov. Phys. JETP 46, 641 (1977) [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)]ADSGoogle Scholar
  188. 188.
    I.M. Dremin, J.W. Gary, “Hadron multiplicities, Phys. Rept. 349, 301 (2001) [arXiv:hep-ph/0004215]ADSMATHGoogle Scholar
  189. 189.
    P. Abreu et al. [DELPHI Collaboration], Measurement of the Gluon Fragmentation Function and a Comparison of the Scaling Violation in Gluon and Quark Jets, Eur. Phys. J. C 13, 573 (2000)ADSGoogle Scholar
  190. 190.
    Y.I. Azimov, Y.L. Dokshitzer, V.A. Khoze, S.I. Troyan, Humpbacked QCD Plateau in Hadron Spectra, Z. Phys. C 31, 213 (1986)ADSGoogle Scholar
  191. 191.
    C.P. Fong, B.R. Webber, Higher Order QCD Corrections to Hadron Energy Distributions in Jets, Phys. Lett. B 229, 289 (1989) ADSGoogle Scholar
  192. 192.
    M.Z. Akrawy et al. [OPAL Collaboration], A Study of Coherence of Soft Gluons in Hadron Jets, Phys. Lett. B 247, 617 (1990) ADSGoogle Scholar
  193. 193.
    P. Abreu et al. [DELPHI Collaboration], The Scale-dependence of the Hadron Multiplicity in Quark and Gluon Jets and a Precise Determination of C(A/ C(F), Phys. Lett. B 449, 383 (1999)ADSGoogle Scholar
  194. 194.
    Y.L. Dokshitzer, V.A. Khoze, S.I. Troian, Specific Features of Heavy Quark Production. 1. Leading Quarks, Leningrad Report LU-TP-92-10 (1992) Google Scholar
  195. 195.
    C. Pahl, S. Bethke, S. Kluth, J. Schieck and the Jade collaboration, Study of Moments of Event Shapes and a Determination of α s using e + e- Annihilation Data from Jade, Eur. Phys. J. C 60, 181 (2009) [Erratum-ibid. C 62, 451 (2009)]ADSGoogle Scholar
  196. 196.
    P. Zerwas, W & Z Physics at LEP, Eur. Phys. J. C 34, 41 (2004) and in Prestigious discoveries at CERN, edited by R. Cashmore, G. Maiani, J.-P. Revol (Springer Verlag, 2004) Google Scholar
  197. 197.
    P. Abreu et al. [DELPHI Collaboration], Energy-dependence of Event Shapes and of α s at LEP2, Phys. Lett. B 456, 322 (1999)ADSGoogle Scholar
  198. 198.
    P. Pfeifenschneider et al. [JADE collaboration and OPAL Collaboration], QCD Analyses and Determinations of α s in e+e− Annihilation at Energies between 35 GeV and 189 GeV, Eur. Phys. J. C 17, 19 (2000) ADSGoogle Scholar
  199. 199.
    P. Achard et al. [L3 Collaboration], Determination of α s from Hadronic Event Shapes in e+e− Annihilation at 192 GeV ≤ √s ≤ 208 GeV, Phys. Lett. B 536, 217 (2002)ADSGoogle Scholar
  200. 200.
    A. Heister et al. [ALEPH Collaboration], Studies of QCD at e+e− Centre-of-Mass Energies between 91 GeV and 209 GeV, Eur. Phys. J. C 35, 457 (2004) ADSGoogle Scholar
  201. 201.
    S. Catani, G. Turnock, B.R. Webber, L. Trentadue, Thrust Distribution in e+e- Annihilation”, Phys. Lett. B 263, 491 (1991) ADSGoogle Scholar
  202. 202.
    S. Catani, G. Turnock, B.R. Webber, Heavy Jet Mass Distribution in e+e- annihilation”, Phys. Lett. B 272, 368 (1991) ADSGoogle Scholar
  203. 203.
    S. Catani, L. Trentadue, G. Turnock, B.R. Webber, Resummation of Large Logarithms in e+e- Event Shape Distributions, Nucl. Phys. B 407, 3 (1993)ADSGoogle Scholar
  204. 204.
    L. Lönnblad, Ariadne Version 4: A Program for Simulation of QCD Cascades Implementing the Color Dipole Model, Comput. Phys. Commun. 71, 15 (1992)ADSGoogle Scholar
  205. 205.
    Y.L. Dokshitzer, B.R. Webber, Calculation of Power Corrections to Hadronic Event Shapes, Phys. Lett. B 352, 451 (1995) ADSGoogle Scholar
  206. 206.
    Y.L. Dokshitzer, A. Lucenti, G. Marchesini, G.P. Salam, Universality of 1/Q Corrections to Jet-shape Observables Rescued, Nucl. Phys. B 511, 396 (1998) [Erratum-ibid. B 593, 729 (2001)]ADSGoogle Scholar
  207. 207.
    Y.L. Dokshitzer, A. Lucenti, G. Marchesini, G.P. Salam, On the Universality of the Milan Factor for 1/Q Power Corrections to Jet Shapes, JHEP 9805, 003 (1998) ADSGoogle Scholar
  208. 208.
    M. Dasgupta, G.P. Salam, Event shapes in e+ e- annihilation and deep inelastic scattering, J. Phys. G 30, R143 (2004) ADSGoogle Scholar
  209. 209.
    G. Dissertori, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich, H. Stenzel, Precise Determination of the Strong Coupling Constant at NNLO in QCD from the Three-Jet Rate in Electron-Positron Annihilation at LEP”, Phys. Rev. Lett. 104, 072002 (2010) ADSGoogle Scholar
  210. 210.
    A. Signer, L.J. Dixon, Electron Positron Annihilation into Four Jets at Next-to-Leading Order in α s, Phys. Rev. Lett. 78, 811 (1997)ADSGoogle Scholar
  211. 211.
    L.J. Dixon, A. Signer, Complete O(α s3) Results for e+e- → (γ,Z) → Four Jets, Phys. Rev. D 56, 4031 (1997) ADSGoogle Scholar
  212. 212.
    Z. Nagy, Z. Trocsanyi, Next-to-Leading Order Calculation of Four-Jet Observables in Electron Positron Annihilation, Phys. Rev. D 59, 014020 (1999) [Erratum-ibid. D 62, 099902 (2000)]ADSGoogle Scholar
  213. 213.
    P.D. Acton et al. [OPAL Collaboration], A Global Determination of α s(M Z) at LEP, Z. Phys. C 55, 1 (1992)ADSGoogle Scholar
  214. 214.
    R. Frederix, S. Frixione, K. Melnikov, G. Zanderighi, NLO QCD Corrections to Five-Jet Production at LEP and the Extraction of α s(M Z), JHEP 11:050 (2010)Google Scholar
  215. 215.
    T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 0605, 026 (2006) ADSGoogle Scholar
  216. 216.
    G. Corcella et al., HERWIG 6.5: An Event Generator for Hadron Emission Reactions with Interfering Gluons (including Supersymmetric Processes), JHEP 0101, 010 (2001) ADSGoogle Scholar
  217. 217.
    S. Catani, F. Krauss, R. Kuhn, B.R. Webber, QCD Matrix Elements + Parton Showers, JHEP 0111, 063 (2001) ADSGoogle Scholar
  218. 218.
    M. Bengtsson, P.M. Zerwas, Four-Jet Events in e+e- Annihilation: Testing the Three-Gluon Vertex, Phys. Lett. B 208, 306 (1988) ADSGoogle Scholar
  219. 219.
    O. Nachtmann, A. Reiter, A Test for the Gluon Self Coupling in the Reactions e+e- → Four Jets and Z → Four Jets, Z. Phys. C 16, 45 (1982)ADSGoogle Scholar
  220. 220.
    J.G. Körner, G. Schierholz, J. Willrodt, QCD Predictions for Four-Jet Final States in e+e- Annihilation: 2. Angular Correlations as a Test of the Triple Gluon Coupling, Nucl. Phys. B 185, 365 (1981) ADSGoogle Scholar
  221. 221.
    Z. Nagy, Z. Trocsanyi, Four-Jet Angular Distributions and Color Charge Measurements: Leading Order versus Next-to-Leading Order, Phys. Rev. D 57, 5793 (1998) ADSGoogle Scholar
  222. 222.
    B. Adeva et al. [L3 Collaboration], A Test of QCD Based on Four-Jet Events from Z Decays, Phys. Lett. B 248, 227 (1990)ADSGoogle Scholar
  223. 223.
    G. Abbiendi et al. [OPAL Collaboration], A Simultaneous Measurement of the QCD Colour Factors and the Strong Coupling, Eur. Phys. J. C 20, 601 (2001)ADSGoogle Scholar
  224. 224.
    M. Czakon, The Four-Loop QCD Beta-function and Anomalous Dimensions, Nucl. Phys. B 710, 485 (2005) ADSMATHGoogle Scholar
  225. 225.
    T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, The Four-Loop Beta Function in Quantum Chromodynamics, Phys. Lett. B 400, 379 (1997) ADSGoogle Scholar
  226. 226.
    T. Gehrmann, M. Jaquier, G. Luisoni, Hadronization Effects in Event Shape Moments, Eur. Phys. J. C 67, 57 (2010)ADSGoogle Scholar
  227. 227.
    G. Dissertori, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich, G. Luisoni, H. Stenzel, Determination of the Strong Coupling Constant Using Matched NNLO+NLLA Predictions for Hadronic Event Shapes in e+e- Annihilations, JHEP 0908, 036 (2009) ADSGoogle Scholar
  228. 228.
    S. Bethke, The 2009 Wolrd Average of α s(M Z), Eur. Phys. J. C 64, 689 (2009)ADSGoogle Scholar
  229. 229.
    J.C. Collins, D.E. Soper, G.F. Sterman, Adv. Ser. Direct. High Energy Phys. 5, 1 (1988)ADSGoogle Scholar
  230. 230.
    We follow here the review by G. Dissertori, G.P. Salam on “Quantum Chromodynamics” in reference [7]Google Scholar
  231. 231.
    P.M. Nadolsky et al., Implications of CTEQ Global Analysis for Collider Observables, Phys. Rev. D 78, 013004 (2008), and earlier references given thereinADSGoogle Scholar
  232. 232.
    A.D. Martin et al., Parton Distributions for the LHC, Eur. Phys. J. C 63, 189 (2009), and earlier papers referenced thereinADSGoogle Scholar
  233. 233.
    S. Catani, M.H. Seymour, A General Algorithm for Calculating Jet Cross-Sections in NLO QCD, Nucl. Phys. B 485, 291 (1997); [Erratum: Nucl. Phys. B 510, 503 (1998)]ADSGoogle Scholar
  234. 234.
    Z. Nagy, Z. Troscanyi, Multijet Cross-Sections in Deep Inelastic Scattering at Next-to-Leading Order, Phys. Rev. Lett. 87, 082001 (2001) ADSGoogle Scholar
  235. 235.
    C. Amsler et al. (Particle Data Group), Review of Particle Physics, Phys. Lett. B 667, 1 (2008)ADSGoogle Scholar
  236. 236.
    F.D. Aaron et al. [H1 Collaboratio], Jet Production in ep Collisions at High Q2 and Determination of α s, Eur. Phys. J. C 65, 363 (2010)ADSGoogle Scholar
  237. 237.
    S. Chekanov et al. [ZEUS Collaboration], Inclusive Jet Cross Sections in the Breit frame in Neutral Current Deep Inelastic Scattering at HERA and Determination of α s, Phys. Lett. B 547, 164 (2002)ADSGoogle Scholar
  238. 238.
    S. Chekanov et al. [ZEUS Collaboration], Inclusive-Jet and Dijet Cross Sections in Deep Inelastic Scattering at HERA, Nucl. Phys. B 765, 1 (2007)ADSGoogle Scholar
  239. 239.
    A. Aktas et al. [H1 Collaboration], Measurement of Inclusive Jet Production in Deep-Inelastic Scattering at High Q2 and Determination of the Strong Coupling, Phys. Lett. B 653, 134 (2007)ADSGoogle Scholar
  240. 240.
    S. Chekanov et al. [ZEUS Collaboration], Jet-Radius Dependence of Inclusive-Jet Cross-Sections in Deep Inelastic Scattering at HERA, Phys. Lett. B 649, 12 (2007)ADSGoogle Scholar
  241. 241.
    C.F. von Weizsäcker, Radiation Emitted in Collisions of Very Fast Electrons (in German), Z. Phys. 88, 612 (1934)MATHGoogle Scholar
  242. 242.
    E.J. Williams, Nature of the High-Energy Particles of Penetrating Radiation and Status of Ionization and Radiation Formulae, Phys. Rev. 45, 729 (1934)ADSGoogle Scholar
  243. 243.
    S. Frixione et al., Improving the Weizsacker-Williams Approximation in Electron – Proton Collisions, Phys. Lett. B 319, 339 (1993) ADSGoogle Scholar
  244. 244.
    C.H. Llewellyn Smith, QCD Predictions for Processes Involving Real Photons, Phys. Lett. B 79, 83 (1978) Google Scholar
  245. 245.
    S.J. Brodsky, T.A. DeGrand, J.F. Gunion, J.H. Weis, Production of Large Transverse Momentum Jets in Photon – Photon Collisions, Phys. Rev. Lett. 41, 672 (1978)ADSGoogle Scholar
  246. 246.
    M. Klasen, G. Kramer, Inclusive Two-Jet Production at HERA: Direct and Resolved Cross-Sections in Next-to-Leading Order QCD, Z. Phys. C 76, 67 (1997)Google Scholar
  247. 247.
    M. Klasen, T. Kleinwort, G. Kramer, Inclusive Jet Production in γp and γγ Processes: Direct and Resolved Photon Cross-Sections in Next-to-Leading Order QCD, Eur. Phys. J. direct C 1, 1 (1998)Google Scholar
  248. 248.
    B.W. Harris, J.F. Owen, Jet Photoproduction and the Structure of the Photon, Phys. Rev. D 57, 5555 (1998) ADSGoogle Scholar
  249. 249.
    S. Frixione, G. Ridolfi, Jet Photoproduction at HERA, Nucl. Phys. B 507, 315 (1997) ADSGoogle Scholar
  250. 250.
    A. Aktas et al. [H1 Collaboration], Photoproduction of Dijets with High Transverse Momenta at HERA, Phys. Lett. B 639, 21 (2006)ADSGoogle Scholar
  251. 251.
    S. Chekanov et al. [ZEUS Collaboration], High-E T Dijet Photoproduction at HERA, Phys. Rev. D 76, 072011 (2007)ADSGoogle Scholar
  252. 252.
    S. Chekanov et al. [ZEUS Collaboration], High Mass Dijet Cross-Sections in Photoproduction at HERA, Phys. Lett. B 531, 9 (2002) Google Scholar
  253. 253.
    S. Chekanov et al. [ZEUS Collaboration], Dijet Photoproduction at HERA and the Structure of the Photon, Eur. Phys. J. C 23, 615 (2002)ADSGoogle Scholar
  254. 254.
    P. Aurenche, M. Fontannaz, J.P. Guillet, New NLO Parametrizations of the Parton Distributions in Real Photons, Eur. Phys. J. C 44, 395 (2005)ADSGoogle Scholar
  255. 255.
    F. Cornet, P. Jankowski, M. Krawczyk, A New 5 Flavour NLO Analysis and Parametrizations of Parton Distributions of the Real Photon, Phys. Rev. D 70, 093004 (2004) ADSGoogle Scholar
  256. 256.
    S. Chekanov et al. [ZEUS Collaboration], Scaling Violations and Determination of α s from Jet Production in γp Interactions at HERA, Phys. Lett. B 560, 7 (2003)ADSGoogle Scholar
  257. 257.
    P. Aurenche, J.P. Guillet, M. Fontannaz, Parton Distributions in the Photon, Z. Phys. C 64, 621 (1994)ADSGoogle Scholar
  258. 258.
    M. Glück, E. Reya, A. Vogt, Parton Structure of the Photon Beyond the Leading Order, Phys. Rev. D 45, 3896 (1992) Google Scholar
  259. 259.
    M. Glück, E. Reya, A. Vogt, Photonic Parton Distributions, Phys. Rev. D 46, 1973 (1992) ADSGoogle Scholar
  260. 260.
    W. Slominski, H. Abramowicz, A. Levy, NLO Photon Parton Parametrization Using e+e- and ep Data, Eur. Phys. J. C 45, 633 (2006)ADSGoogle Scholar
  261. 261.
    V.S. Fadin, E.A. Kuraev, L.N. Lipatov, On the Pomeranchuk Singularity in Asymptotically Free Theories, Phys. Lett. B 60, 50 (1975)ADSGoogle Scholar
  262. 262.
    I.I. Balitsky, L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28, 822 (1978) [Yad. Fiz. 28, 1597 (1978)]Google Scholar
  263. 263.
    M. Dittmar et al., Summary Report for the HERA – LHC Workshop Proceedings: Parton Distributions, Report FUM-936-FT, [arXiv:0901.2504 [hep-ph]] (2009)Google Scholar
  264. 264.
    L. McLerran, Gluon Evolution and Saturation Proceedings, presented at the Gribov Memorial Workshop on Quantum Chromodynamics and Beyond, [arXiv:1011.3202 [hep-ph]] (2010)Google Scholar
  265. 265.
    For the concept and definitions of the terms Color Glass Condensate, see, L. McLerran, The CGC and the Glasma: Two Lectures at the Yukawa Insitute, [arXiv:1011.3204 [hep-ph]] (2010)Google Scholar
  266. 266.
    See, for a review, E. Iancu, R. Venugopalan, The Color Glass Condensate and High Energy Scattering in QCD, in Quark gluon plasma, edited by R. Hwa, X.N. Wang (World Scientific, 2003) [arXiv:hep-ph/0303204]Google Scholar
  267. 267.
    S.J. Brodsky, F.E. Close, J.F. Gunion, Phenomenology of Photon Processes, Vector Dominance and Crucial Tests for Parton Models, Phys. Rev. D6, 177 (1972)ADSGoogle Scholar
  268. 268.
    J. Kwiecinski, B.M. Badelek, Analysis of the Electroproduction Structure Functions in the Low Q**2 Region combining the Vector Meson Dominance and the Parton Model with possible Scaling Violation”, Z. Phys. C43, 251 (1989) ADSGoogle Scholar
  269. 269.
    G. Abbiendi et al. [OPAL Collaboration], Di-jet Production in Photon Photon Collisions at √s ee = from 189 GeV to 209 GeV, Eur. Phys. J. C 31, 307 (2003)ADSGoogle Scholar
  270. 270.
    J. Abdallah et al. [DELPHI Collaboration], Di-jet Production in Gamma-Gamma Collisions at LEP2, Eur. Phys. J. C 58, 531 (2008) ADSGoogle Scholar
  271. 271.
    P. Achard et al. [L3 Collaboration], Inclusive Jet Production in Two-Photon Collisions at LEP, Phys. Lett. B 602, 157 (2004) ADSGoogle Scholar
  272. 272.
    G. Abbiendi et al. [OPAL Collaboration], Inclusive Jet Production in Photon-Photon Collisions at √s ee from 189 to 209 GeV, Phys. Lett. B 658, 185 (2008)ADSGoogle Scholar
  273. 273.
    V.M. Abazov et al. [D0 Collaboration], Measurement of the Inclusive Jet Cross-Section in $p\bar{p}$p Collisions at √s = 1.96 TeV, Phys. Rev. Lett. 101, 062001 (2008)ADSGoogle Scholar
  274. 274.
    Measurement of the Inclusive Jet Cross Section in pp Collisions at 7 TeV, CMS Physics Analysis Summary, CMS PAS QCD-10-011 (2010)Google Scholar
  275. 275.
    A. Bhatti, D. Lincoln, Jet Physics at the Tevatron, FERMILAB-PUB-10-028-E-PPD [arXiv:1002.1708 [hep-ex]] (2010)Google Scholar
  276. 276.
    T. Aaltonen et al. [CDF Collaboration], Measurement of the Inclusive Jet Cross Section at the Fermilab Tevatron \hbox{$p \bar{p}$}p Collider Using a Cone-Based Jet Algorithm, Phys. Rev. D 78, 052006 (2008) [Erratum-ibid. D 79, 119902 (2009]ADSGoogle Scholar
  277. 277.
    A. Abulencia et al. [CDF – Run II Collaboration], Measurement of the Inclusive Jet Cross Section Using the kT Algorithm in \hbox{$p\overline{p}$}pp Collisions at √s = 1.96 TeV with the CDF II Detector, Phys. Rev. D 75, 092006 (2007) [Erratum-ibid. D 75, 119901 (2007)]ADSGoogle Scholar
  278. 278.
    S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch, M. Tonnesmann, Jets in hadron-hadron collisions, Prog. Part. Nucl. Phys. 60, 484 (2008)ADSGoogle Scholar
  279. 279.
    Z. Nagy, Three-jet Cross Sections in Hadron Hadron Collisions at Next-to-leading Order, Phys. Rev. Lett. 88, 122003 (2002) ADSGoogle Scholar
  280. 280.
    M. Bähr et al., Herwig++ Physics and Manual, Eur. Phys. J. C 58, 639 (2008)ADSGoogle Scholar
  281. 281.
    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rep. 504, 145 (2011) ADSGoogle Scholar
  282. 282.
    E. Eichten, K.D. Lane, M.E. Peskin, New Tests for Quark and Lepton Substructure, Phys. Rev. Lett. 50, 811 (1983)ADSGoogle Scholar
  283. 283.
    U. Baur, I. Hinchliffe, D. Zeppenfeld, Excited Quark Production at Hadron Colliders, Int. J. Mod. Phys. A 2, 1285 (1987)ADSGoogle Scholar
  284. 284.
    U. Baur, M. Spira, P.M. Zerwas, Excited Quark and Lepton Production at Hadron Colliders, Phys. Rev. D 42, 815 (1990)ADSGoogle Scholar
  285. 285.
    P.H. Frampton, S.L. Glashow, Chiral Color: An Alternative to the Standard Model, Phys. Lett. B 190, 157 (1987) ADSGoogle Scholar
  286. 286.
    J. Bagger, C. Schmidt, S. King, Axigluon Production in Hadronic Collisions, Phys. Rev. D 37, 1188 (1988) ADSGoogle Scholar
  287. 287.
    R.S. Chivukula, A.G. Cohen, E.H. Simmons, New Strong Interactions at the Tevatron?, Phys. Lett. B 380, 92 (1996)ADSGoogle Scholar
  288. 288.
    E.H. Simmons, Coloron phenomenology, Phys. Rev. D 55, 1678 (1997) ADSGoogle Scholar
  289. 289.
    K.D. Lane, M.V. Ramana, Walking Technicolor Signatures at Hadron Colliders, Phys. Rev. D 44, 2678 (1991) ADSGoogle Scholar
  290. 290.
    K. Lane, S. Mrenna, The Collider Phenomenology of Technihadrons in the Technicolor Straw Man Model, Phys. Rev. D 67, 115011 (2003) ADSGoogle Scholar
  291. 291.
    R. Foadi, M.T. Frandsen, T.A. Ryttov, F. Sannino, Minimal Walking Technicolor: Set Up for Collider Physics, Phys. Rev. D 76, 055005 (2007) ADSGoogle Scholar
  292. 292.
    A. Belyaev et al., Technicolor Walks at the LHC, Phys. Rev. D 79, 035006 (2009) ADSGoogle Scholar
  293. 293.
    T. Aaltonen et al. [CDF Collaboration], Search for New Particles Decaying into Dijets in Proton-Antiproton Collisions at √s = 1.96 TeV, Phys. Rev. D 79, 112002 (2009)ADSGoogle Scholar
  294. 294.
    G. Aad et al. [ATLAS Collaboration], Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC, Phys. Rev. Lett. 105, 161801 (2010)ADSGoogle Scholar
  295. 295.
    V. Khachatryan et al. [CMS Collaboration], Search for Dijet Resonances in 7 TeV pp Collisions at CMS, Phys. Rev. Lett. 105, 211801 (2010)ADSGoogle Scholar
  296. 296.
    R.K. Ellis, G. Martinelli, R. Petronzio, Lepton Pair Production at Large Transverse Momentum in Second Order QCD, Nucl. Phys. B 211, 106 (1983) ADSGoogle Scholar
  297. 297.
    P.B. Arnold, M.H. Reno, The Complete Computation of High p t W and Z Production in 2nd Order QCD, Nucl. Phys. B 319, 37 (1989) [Erratum-ibid. B 330, 284 (1990)]ADSGoogle Scholar
  298. 298.
    P.B. Arnold, R.K. Ellis, M.H. Reno, High p t W and Z Production at the Tevatron, Phys. Rev. D 40, 912 (1989)ADSGoogle Scholar
  299. 299.
    W.T. Giele, E.W.N. Glover, D.A. Kosower, Higher Order Corrections to Jet Cross-Sections in Hadron Colliders, Nucl. Phys. B 403, 633 (1993) ADSGoogle Scholar
  300. 300.
    J.M. Campbell, R.K. Ellis, Next-to-Leading Order Corrections to W + 2Jet and Z + 2Jet Production at Hadron Colliders, Phys. Rev. D 65, 113007 (2002) ADSGoogle Scholar
  301. 301.
    J.M. Campbell, R.K. Ellis, D.L. Rainwater, Next-to-Leading Order QCD Predictions for W + 2Jet and Z + 2Jet Production at the CERN LHC, Phys. Rev. D 68, 094021 (2003) ADSGoogle Scholar
  302. 302.
    F.A. Berends, W.T. Giele, H. Kuijf, R. Kleiss, W.J. Stirling, Multi – Jet Production in W,Z Events at $p\bar{p}$p Colliders, Phys. Lett. B 224, 237 (1989) ADSGoogle Scholar
  303. 303.
    F.A. Berends, H. Kuijf, B. Tausk, W.T. Giele, On the Production of a W and Jets at Hadron Colliders, Nucl. Phys. B 357, 32 (1991)ADSGoogle Scholar
  304. 304.
    J.M. Campbell, R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206, 10 (2010); MCFM homepage, http://mcfm.fnal.gov ADSGoogle Scholar
  305. 305.
    K. Melnikov, F. Petriello, Electroweak Gauge Boson Production at Hadron Colliders through O(α s2), Phys. Rev. D 74, 114017 (2006) ADSGoogle Scholar
  306. 306.
    S. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini, Vector Boson Production at Hadron Colliders: A Fully Exclusive QCD Calculation at NNLO, Phys. Rev. Lett. 103, 082001 (2009) ADSGoogle Scholar
  307. 307.
    G.A. Ladinsky, C.P. Yuan, The Nonperturbative Regime in QCD Resummation for Gauge Boson Production at Hadron Colliders, Phys. Rev. D 50, 4239 (1994) ADSGoogle Scholar
  308. 308.
    C. Balazs, C.P. Yuan, Soft Gluon Effects on Lepton Pairs at Hadron Colliders, Phys. Rev. D 56, 5558 (1997) ADSGoogle Scholar
  309. 309.
    V.M. Abazov et al. [D0 Collaboration], Measurement of the Normalized Z / γ∗ → μ+μ− Transverse Momentum Distribution in $p\bar{p}$p Collisions at √s = 1.96 TeV, Phys. Lett. B 693, 522 (2010)ADSGoogle Scholar
  310. 310.
    Measurement of Z / γ∗ → μ+μ− + Jets Production Cross Section, CDF Note 10216, July 10, 2010 (CDF Collaboration); URL: http://www-cdf-fnal.gov
  311. 311.
    For a recent discussion of the standard electroweak model, see the review by J. Erler, P. Langacker: “Electroweak model and constraints on new physics” in reference [7]Google Scholar
  312. 312.
    D.E. Acosta et al. [CDF Collaboration], Measurement of the W+W− Production Cross Section in $p\bar{p}$p Collisions at √s = 1.96 TeV using Dilepton Events, Phys. Rev. Lett. 94, 211801 (2005)ADSGoogle Scholar
  313. 313.
    T. Aaltonen et al. [CDF Collaboration], First Measurement of ZZ Production in $p\bar{p}$p Collisions at √s = 1.96 TeV, Phys. Rev. Lett. 100, 201801 (2008)ADSGoogle Scholar
  314. 314.
    V.M. Abazov et al. [D0 Collaboration], Measurement of the WW Production Cross Section in $p\bar{p}$p Collisions at √s = 1.96 TeV, Phys. Rev. Lett. 94, 151801 (2005) [Erratum-ibid. 100, 139901 (2008)] ADSGoogle Scholar
  315. 315.
    V.M. Abazov et al. [D0 Collaboration], Evidence of WW + WZ Production with Lepton + Jets Final States in Proton-Antiproton Collisions at √s = 1.96 TeV, Phys. Rev. Lett. 102, 161801 (2009)ADSGoogle Scholar
  316. 316.
    T. Aaltonen et al. [CDF Collaboration], First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider, Phys. Rev. Lett. 103, 091803 (2009)ADSGoogle Scholar
  317. 317.
    J.M. Campbell, R.K. Ellis, An Update on Vector Boson Pair Production at Hadron Colliders, Phys. Rev. D 60, 113006 (1999) ADSGoogle Scholar
  318. 318.
    T. Aaltonen et al. [The CDF Collaboration], Measurement of the Top Quark Mass and \hbox{$p\bar{p} \to t \bar{t}$}p  → t Cross Section in the All-Hadronic Mode with the CDFII Detector, Phys. Rev. D 81, 052011 (2010)ADSGoogle Scholar
  319. 319.
    A. Djouadi, M. Spira, P.M. Zerwas, QCD Corrections to Hadronic Higgs Decays, Z. Phys. C 70, 427 (1996)Google Scholar
  320. 320.
    J.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Jet Substructure as a New Higgs Search Channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001ADSGoogle Scholar
  321. 321.
    T. Aaltonen et al. [CDF Collaboration], Search for Standard Model Higgs Boson Production in Association with a W Boson at CDF, Phys. Rev. D 78, 032008 (2008)ADSGoogle Scholar
  322. 322.
    T. Aaltonen et al. [The CDF Collaboration], Search for Doubly Charged Higgs Bosons with Lepton-Flavor-Violating Decays involving Tau Leptons, Phys. Rev. Lett. 101, 121801 (2008)ADSGoogle Scholar
  323. 323.
    T. Aaltonen et al. [CDF Collaboration], A Search for the Associated Production of the Standard-Model Higgs Boson in the All-Hadronic Channel, Phys. Rev. Lett. 103, 221801 (2009)ADSGoogle Scholar
  324. 324.
    T. Plehn, G.P. Salam, M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104, 111801 (2010) ADSGoogle Scholar
  325. 325.
    J.M. Butterworth, J.R. Ellis, A.R. Raklev, Reconstructing Sparticle Mass Spectra using Hadronic Decays, JHEP 0705, 033 (2007) ADSGoogle Scholar
  326. 326.
    J.M. Butterworth, B.E. Cox, J.R. Forshaw, WW Scattering at the CERN LHC, Phys. Rev. D 65, 096014 (2002) ADSGoogle Scholar
  327. 327.
    U. Baur, L.H. Orr, Searching for \hbox{$t \bar{t}$}t Resonances at the Large Hadron Collider, Phys. Rev. D 77, 114001 (2008) ADSGoogle Scholar
  328. 328.
    S. Moch, J.A.M. Vermaseren, A. Vogt, The Three-loop Splitting Functions in QCD: The Non-Singlet Case, Nucl. Phys. B 688, 101 (2004) MathSciNetADSMATHGoogle Scholar
  329. 329.
    A. Vogt, S. Moch, J.A.M. Vermaseren, The Three-loop Splitting Functions in QCD: The Singlet Case, Nucl. Phys. B 691, 129 (2004) MathSciNetADSMATHGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.DESYHamburgGermany
  2. 2.Universität HamburgHamburgGermany

Personalised recommendations