The European Physical Journal H

, Volume 36, Issue 1, pp 85–152

Shock wave physics and detonation physics — a stimulus for the emergence of numerous new branches in science and engineering

Review

Abstract

In the period of the Cold War (1945−1991), Shock Wave Physics and Detonation Physics (SWP&DP) — until the beginning of WWII mostly confined to gas dynamics, high-speed aerodynamics, and military technology (such as aero- and terminal ballistics, armor construction, chemical explosions, supersonic gun, and other firearms developments) — quickly developed into a large interdisciplinary field by its own. This rapid expansion was driven by an enormous financial support and two efficient feedbacks: the Terminal Ballistic Cycleand the Research& Development Cycle. Basic knowledge in SWP&DP, initially gained in the Classic Period(from 1808) and further extended in the Post-Classic Period(from the 1930s to present), is now increasingly used also in other branches of Science and Engineering (S&E). However, also independent S&E branches developed, based upon the fundamentals of SWP&DP, many of those developments will be addressed (see Tab. 2). Thus, shock wave and detonation phenomena are now studied within an enormous range of dimensions, covering microscopic, macroscopic, and cosmic dimensions as well as enormous time spans ranging from nano-/picosecond shock durations (such as produced by ultra-short laser pulses) to shock durations that continue for centuries (such as blast waves emitted from ancient supernova explosions). This paper reviews these developments from a historical perspective.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.D. Bennett, Long rod penetrator performance, J. Battlefield Technol. 1, 1–6 (1998) Google Scholar
  2. 2.
    S.D. Poisson, Mémoire sur la théorie du son, J. École Polytech. (Paris) 7, 319–392 (1808) Google Scholar
  3. 3.
    A. Toepler, Beobachtungen nach einer neuen optischen Methode (M. Cohen & Sohn, Bonn, 1864), p. 43 Google Scholar
  4. 4.
    P.O.K. Krehl, History of shock waves, explosions, and impact – a chronological and biographical reference (Springer, Berlin etc., 2009)Google Scholar
  5. 5.
    D.J. Hollenbach, C.F. McKee, Astrophysical shock waves, edited by S.P. Maran, In: The astronomy and astrophysics encyclopedia, edited by S.P. Maran (Van Nostrand & Reinhold, New York, 1992), pp. 623–627Google Scholar
  6. 6.
    G. Zemplén, Sur l’impossibilité d’ondes de choc négatives dans les gaz, C. R. Acad. Sci. Paris 141, 710–712 (1905)Google Scholar
  7. 7.
    G. Zemplén, Sur l’impossibilité d’ondes de choc négatives dans les gaz, C. R. Acad. Sci. Paris 142, 142–143 (1906)MATHGoogle Scholar
  8. 8.
    J. Tissot, Discours véritable de la vie, mort, et des os du géant Theutobocus [...]. (Poyet, Lyon, 1613), edited by E. Fournier, In: Variétés histoires et littéraires, I-IX (Jannet, Paris, 1855–1863)Google Scholar
  9. 9.
    J. Bernoulli, Discours sur les lois de la communication du mouvement. In: Johannis Bernoulli: opera omnia, edited by J.E. Hofmann (Olms, Hildesheim, 1968), Vol. 3, Chap. 1, pp. 7–14Google Scholar
  10. 10.
    D. Diderot, J. Le Rond d’Alembert, Encyclopédie ou dictionnaire raisonné des sciences, des arts et des métiers. 35 vols. (S. Faulche, Neufchatel, 1751–1780)Google Scholar
  11. 11.
    R.Z. Sagdeev, C.F. Kennel, Collisionless shock waves, Scient. Am. 264, 106–113 (1991)CrossRefGoogle Scholar
  12. 12.
    R.A. Strehlow, Detonation and the hydrodynamics of reactive shock waves, Preprints of Papers of a Symposium – 11th Nat. Meet. ACS Division of Fuel Chemistry, Boston (Fall, 1967), 11-4, pp. 1–28Google Scholar
  13. 13.
    C. Huygens, Règles du mouvement dans la rencontre des corps, Journal des Sçavans 5, 22–24 (1669) Google Scholar
  14. 14.
    C. Huygens, Christiani Hugenii opuscula posthuma. edited by B. De Volder, B. Fullenius (Boutesteyn, Lugduni Batavorum, 1703)Google Scholar
  15. 15.
    E. Mariotte, Traité de la percussion ou choc des corps (E. Michallet, Paris, 1673)Google Scholar
  16. 16.
    C. Wren, Lex Naturae de collisione corporum [in Lat.], Philos. Trans. Roy. Soc. Lond. 3, 867–868 (1669) Google Scholar
  17. 17.
    J. Wallis, A summary account of the general laws of motion, by way of letter written by him to the Publisher, and communicated to the R. Society, Philos. Trans. Roy. Soc. Lond. 3, 864–866 (1669) Google Scholar
  18. 18.
    G. Coriolis, Théorie mathématique des effets du jeu de billard (Carilian-Goeury, Paris, 1835)Google Scholar
  19. 19.
    C.A. Truesdell III, Euler’s two letters to Lagrange in October, 1759. In: Leonardi Euleri opera omnia, edited by C.A. Truesdell III (Teubner, Leipzig etc., 1926); see Vol. XIII [II], pp. xxxvii–xliGoogle Scholar
  20. 20.
    C.(V.) Dvořák, Über eine neue einfache Art der Schlierenbeobachtung, Ann. Phys. 9, 502–511 (1880) Google Scholar
  21. 21.
    J. Jamin, Description d’un nouvel appareil de recherches, fondé sur les interférences, C. R. Acad. Sci. Paris 42, 482–485 (1856)Google Scholar
  22. 22.
    J. Jamin, Neuer Interferential-Refractor, Ann. Phys. 98, 345–349 (1856)Google Scholar
  23. 23.
    L. Mach, Über ein Interferenzrefraktor, Sitzungsber. Akad. Wiss. Wien 101, 5–10 (1892) Google Scholar
  24. 24.
    L. Mach, Über ein Interferenzrefraktor, Sitzungsber, Akad. Wiss. Wien 102, 1035–1056 (1893)ADSGoogle Scholar
  25. 25.
    K. Antolik, Das Gleiten elektrischer Funken, Ann. Phys. 151, 127–130 (1874)Google Scholar
  26. 26.
    E. Mach, J. Wosyka, Über einige mechanische Wirkungen des elektrischen Funkens. Sitzungsber, Akad. Wiss. Wien 72, 44–52 (1875) Google Scholar
  27. 27.
    P.O.K. Krehl, Single-Mach and double-Mach reflection – its representation in Ernst Mach’s historical soot method. In: Proc. 18th Int. Symposium on Shock Waves, edited by K. Takayama (Springer, Berlin etc., 1992), pp. 221–226Google Scholar
  28. 28.
    Y. Denisov, Y. Troshin, Pulsating and spinning detonation of gaseous mixtures in tubes [in Russ.], Dokl. AN 125, 110–113 (1959)Google Scholar
  29. 29.
    Y. Denisov, Y. Troshin, Structure of gaseous detonation in tubes, Sov. Phys. Tech. Phys. 5, 419–431 (1960) Google Scholar
  30. 30.
    F. Zhang, H. Grönig, A. Van De Ven, DDT and detonation waves in dust-air mixtures, Shock Waves 11, 53–71 (2001) ADSCrossRefGoogle Scholar
  31. 31.
    C. Wheatstone, Description of the electromagnetic clock, Proc. Roy. Soc. Lond. 4, 249–278 (1840) Google Scholar
  32. 32.
    C. Wheatstone, Note sur le chronoscope électro-magnétique, C. R. Acad. Sci. Paris 20, 1554–1561 (1845)Google Scholar
  33. 33.
    B. Edgell, S. Edgell, W. Legge, The Wheatstone-Hipp chronoscope. Its adjustments, accuracy, and control, Brit. J. Psychology II, 58–88 (1906) Google Scholar
  34. 34.
    C.S.M. Pouillet, Note sur un moyen de mesurer des intervalles de temps extrêmement courts, comme la durée du choc des corps élastiques, celle du débandement des ressorts, de l’inflammation de la poudre etc.; et sur un moyen nouveau de comparer les intensités des courants électriques, soit permanents, soit instantanés, C. R. Acad. Sci. Paris 19, 1384–1389 (1844)Google Scholar
  35. 35.
    R. Sabine, On a method of measuring very small intervals of time, Philos. Mag. 1, 337–346 (1876) Google Scholar
  36. 36.
    R. Sabine, Dauer eines Schlages, Dingler’s Polytech. J. 222, 499–500 (1876)Google Scholar
  37. 37.
    W. von Siemens, Über die Anwendung des electrischen Funkens zu Geschwindigkeitsmessungen, Ann. Phys. 66, 435–444 (1845)Google Scholar
  38. 38.
    P.E. Le Boulengé, Mémoire sur un chronographe électro-balistique, Mém. Cour. Mém. Sav. Etrang. Acad. Roy. (Bruxelles) 32, 1–39 (1864/1865)Google Scholar
  39. 39.
    F.A. Bashforth, A revised account of the experiments made with the Bashforth chronograph to find the resistance of the air to the motion of projectiles, with the application of the results to the calculation of trajectories according to J. Bernoulli’s method. (Cambridge University Press, Cambridge, 1890)Google Scholar
  40. 40.
    A. Noble, On methods that have been adopted for measuring pressures in the bores of guns, Rept. Meet. Brit. Assoc. 64, 523–540 (1894)Google Scholar
  41. 41.
    M. Deprez, Études sur les chronographes électriques et recherches sur l’étincelle d’induction et les électro-aimants, C. R. Acad. Sci. Paris 78, 1427–1430 (1874)Google Scholar
  42. 42.
    M. Deprez, Perfectionnement aux chronographes électriques et recherches sur les électro-aimants, C. R. Acad. Sci. Paris 78, 1562–1565 (1874)Google Scholar
  43. 43.
    H. Sébert, Notice sur de nouveaux apparats balistiques employés par la service de l’artillerie de la marine (L. Baudoin, Paris, 1881)Google Scholar
  44. 44.
    F.J. Jervis-Smith, A new form of electric chronograph, Philos. Mag. 29, 377–383 (1890)Google Scholar
  45. 45.
    C. Cranz, K. Becker, Messungen über den Luftwiderstand bei großen Geschwindigkeiten, Artilleristische Monatshefte 69, 189–196 (1912)Google Scholar
  46. 46.
    C. Cranz, K. Becker, Messungen über den Luftwiderstand bei großen Geschwindigkeiten, Artilleristische Monatshefte 71, 333–368 (1912)Google Scholar
  47. 47.
    A.E. Dufour, Oscillographe cathodique pour l’étude des basses, moyenne et hautes fréquences, L’onde électrique 1, 638–663; 699–715 (1922)Google Scholar
  48. 48.
    A.E. Dufour , L’onde électrique 2, 19–42 (1923)Google Scholar
  49. 49.
    A.B. Wood, The cathode ray oscillograph, Proc. Phys. Soc. (Lond.) 35, 109–124 (1923)Google Scholar
  50. 50.
    A.B. Wood, The cathode ray oscillograph, Inst. Electr. Eng. J. 63, 1046–1055 (1925)Google Scholar
  51. 51.
    D.A. Keys, A piezoelectric method of measuring explosion pressures, Philos. Mag. 42 [VI], 473–488 (1921)Google Scholar
  52. 52.
    D.A. Keys, The cathode-ray oscillograph and its application to the exact measurement of explosion pressures, potential changes in vacuum tubes and high tension magnetos, J. Franklin Inst. 196, 576–591 (1923)CrossRefGoogle Scholar
  53. 53.
    H. Joachim , H. Illgen , Gasdruckmessungen mit Piezoindikator, Z. Ges. Schieß- u. Sprengstoffwesen 2, 76–79; 121–125 (1932)Google Scholar
  54. 54.
    T.J. Rodman, Reports of experiments on the properties of metals for cannon, and the qualities of cannon powder; with an account of the fabrication and trial of a 15-inch gun. (Crosby, Boston, MA, 1861) Google Scholar
  55. 55.
    A. Noble, On the tension of fired gunpowder, Proc. Roy. Inst. 6, 274–283 (1872) Google Scholar
  56. 56.
    A. Noble, Sur la force explosive de la poudre à canon, Rev. Scient. France & Etrang. 48, 1125–1141 (1872)Google Scholar
  57. 57.
    H.W. Hilliar, Experiments on the pressure wave thrown out by submarine explosions, (Brit.) Dept. of Scientific Research & Experiment, Rept. RE 142/19 (1919), Reprinted, Underwater explosion research; a compendium of British and American reports (ONR, Washington, DC, 1950); see Vol. 1: The shock wave, pp. 83–158Google Scholar
  58. 58.
    W. Wolff , Die Messung von Geschossgeschwindigkeiten, Mutter Erde (Spemann Berlin, etc.) 2, 145–148 (1900) Google Scholar
  59. 59.
    R. Blochmann , Die Explosion unter Wasser, Marine-Rundschau 9 (1. Teil), 197–227 (1898)Google Scholar
  60. 60.
    F.E. Mallard , H.L. Le Châtelier , Recherches expérimentales et théoriques sur la combustion des mélanges gazeux explosifs, Ann. Mines 3 [VIII], 31–68 (1883)Google Scholar
  61. 61.
    F.E. Mallard, H.L. Le Châtelier, Ann. Mines 4, 274–568 (1883) Google Scholar
  62. 62.
    B. Thompson, Experiments to determine the force of fired gunpowder, Philos. Trans. Roy. Soc. Lond. 87, 222–292 (1797)CrossRefGoogle Scholar
  63. 63.
    R.W. Bunsen, Gasometry: comprising the leading physical and chemical properties of gases (Walton & Maberly, London, 1857)Google Scholar
  64. 64.
    Ch. Hutton, On a new gunpowder eprouvette, see his Tracts on mathematical and philosophical subjects, in three volumes (Rivington etc., London, 1812), Vol. III, pp. 153–163 Google Scholar
  65. 65.
    W.H.F. Talbot, On the production of instantaneous images, Philos. Mag. 3, 73–77 (1852) Google Scholar
  66. 66.
    R.L. Maddox, An experiment with gelantino-bromide, Brit. J. Photogr. 18, 422–423 (1871)Google Scholar
  67. 67.
    C. Wheatstone, An account of some experiments to measure the velocity of electric light, Proc. Roy. Soc. Lond. 3, 299–300 (1834) Google Scholar
  68. 68.
    A.J. von Oettingen, A. von Gernet, Über Knallgasexplosionen, Ann. Phys. 33, 586–609 (1888)Google Scholar
  69. 69.
    W. Payman, D.W. Woodhead, Explosion waves and shock waves, Proc. Roy. Soc. Lond. A 132, 200–213 (1931)ADSCrossRefGoogle Scholar
  70. 70.
    C. Cranz, H. Schardin, Kinematographie auf ruhendem Film und mit extrem hoher Bildfrequenz, Z. Phys. 56, 147–183 (1929)ADSCrossRefGoogle Scholar
  71. 71.
    H. Davy, (I) On the fire-damp of coal mines, and on methods of lighting the mines so as to prevent its explosion, Philos. Trans. Roy. Soc. Lond. 106, 1–22 (1816) Google Scholar
  72. 72.
    M. Faraday, C. Lyell, On explosions in coal mines, Philos. Mag. 26, 16–35 (1845) Google Scholar
  73. 73.
    W. Galloway, On the influence of coal dust in colliery explosions, Proc. Roy. Soc. Lond. 24, 354–372 (1876)Google Scholar
  74. 74.
    W. Galloway, On the influence of coal dust in colliery explosions, Proc. Roy. Soc. Lond. 28, 410–421 (1879)Google Scholar
  75. 75.
    W. Galloway, On the influence of coal dust in colliery explosions, Proc. Roy. Soc. Lond. 32, 454–455 (1881)CrossRefGoogle Scholar
  76. 76.
    W. Galloway , On the influence of coal dust in colliery explosions, Proc. Roy. Soc. Lond. 33, 437–445; 490–495 (1882)Google Scholar
  77. 77.
    G. Charpy, Les travaux de la Commission du grisou, Rev. Gén. Sci. Pures Appl. 1, 540–546 (1890) Google Scholar
  78. 78.
    J.N. Haton de la Goupillière , Rapport présenté au nom de la commission d’étude des moyens propres à prévenir les explosions de grisou, Ann. Mines 18, 193–411 (1880)Google Scholar
  79. 79.
    P.E.M. Berthelot, Sur la vitesse de propagation des phénomènes explosifs dans les gaz, C. R. Acad. Sci. Paris 93, 18–22 (1881) Google Scholar
  80. 80.
    P.E.M. Berthelot, Détonation de l’acétylène, du cyanogène et des combinaisons endothermiques en général, C. R. Acad. Sci. Paris 93, 613–619 (1881)Google Scholar
  81. 81.
    P.E.M. Berthelot, P. Vieille, Nouvelles recherches sur la propagation des phénomènes explosifs dans les gaz, C. R. Acad. Sci. Paris 95, 151–157 (1882)Google Scholar
  82. 82.
    P.E.M. Berthelot, P. Vieille, Sur la période d’état variable qui précède le régime de détonation et sur les conditions d’établissement de l’onde explosive, C. R. Acad. Sci. Paris 95, 199–205 (1882)Google Scholar
  83. 83.
    E. Mallard, H.L. Le Châtelier, Sur les vitesses de propagation de l’inflammation dans les mélanges gazeux explosifs, C. R. Acad. Sci. Paris 93, 145–148 (1881)Google Scholar
  84. 84.
    E. Mallard, H.L. Le Châtelier, Sur la vitesse de refroidissement des gaz aux températures élevées, C. R. Acad. Sci. Paris 93, 962–965 (1881)Google Scholar
  85. 85.
    Liber ignium ad comburendos hostes auctore Marco Græco, See F.J.G. De Laporte Du Theil, Traité des feux propres à détruire les ennemis, composé par Marcus Le Grec (publié d’après deux manuscrits de la Bibliothèque Nationale, Paris, 1804) Google Scholar
  86. 86.
    R. Bacon, Fratris Rogeri Bacon, ordinis Minorum, opus majus ad Clementem IV, pontificem Romanum (Typis Gulielmi Bouyer, Londini, 1733)Google Scholar
  87. 87.
    R.B. Burke, The opus maius of Roger Bacon (Univ. of Pennsylvania Press, Philadelphia, PA, 1928), Vol. 2, pp. 629–630Google Scholar
  88. 88.
    M.A. Michael, The iconography of kingship in the Walter De Milemete treatise, J. Warburg Courtauld Institutes 57, 35–47 (1994) CrossRefGoogle Scholar
  89. 89.
    C. Haeussermann, Gedächtnisrede auf Christian Friedrich Schönbein [Referat], Z. Ges. Schieß- u. Sprengstoffwesen 4, 433–434 (1909) Google Scholar
  90. 90.
    G.W. Cullum, Biographical register of the officers and graduates of the US Military Academy at West Point from 1802–1890 (Houghton Mifflin, Boston, 1891), Vol. II, pp. 66–71Google Scholar
  91. 91.
    A. Nobel, Improvements in the manufacture of explosives, Brit. Patent No. 1471 (1888)Google Scholar
  92. 92.
    F.A. Abel, J. Dewar, Perfectionnement dans les munitions de guerre, Swiss Patent No. 1189 (1889)Google Scholar
  93. 93.
    P. Woulfe, Experiments on a new colouring substance from the island of Amsterdam in the South Sea, Philos. Trans. Roy. Soc. Lond. 64, 91–93 (1775) Google Scholar
  94. 94.
    E.C. Howard, On a new fulminating mercury, Philos. Trans. Roy. Soc. Lond. 90, 204–238 (1800)CrossRefGoogle Scholar
  95. 95.
    P.L. Dulong , Mémoire sur une nouvelle substance détonante, Annal. Chim. 86, 37–43 (1813) Google Scholar
  96. 96.
    A. Sobrero, Sur plusieurs composés détonants produits avec l’acide nitrique et le sucre, la dextrine, la lactine, la marnite, et la glycérine, C. R. Acad. Sci. Paris 25, 247–248 (1847)Google Scholar
  97. 97.
    A. Nobel, Explosive compounds, Brit. Patent No. 1345 (1867)Google Scholar
  98. 98.
    A. Nobel, Exploding compounds, Brit. Patent No. 4179 (1875)Google Scholar
  99. 99.
    W. Michler, C. Meyer, Verhalten von Sulfochloriden zu Aminen. III. Mittheilung, Ber. Dt. Chem. Gesell. 12, 1791–1793 (1879)CrossRefGoogle Scholar
  100. 100.
    R.S. Penniman, Protected nitrate of ammonia for use in explosive compounds, US Patent No. 312010 (1885)Google Scholar
  101. 101.
    T. Curtius, Über Stickstoffwasserstoffsäure (Azoimid) N3H, Ber. Dt. Chem. Gesell. 23, 3023–3033 (1890)CrossRefGoogle Scholar
  102. 102.
    T. Curtius, Neues vom Stickstoffwasserstoff, Ber. Dt. Chem. Gesell. 24, 3341–3349 (1891)CrossRefGoogle Scholar
  103. 103.
    C. Haeussermann, Über die explosiven Eigenschaften des Trinitrotoluols, Z. Angew. Chem. 4, 508–511 (1891) CrossRefGoogle Scholar
  104. 104.
    B.C.G. Tollens, P. Wiegand, Über den Penta-Erythrit, einen aus Formaldehyd und Acetaldehyd synthetisch hergestellten 4–wertigen Alkohol, Justus Liebig’s Ann. Chem. 265, 316–340 (1891)CrossRefGoogle Scholar
  105. 105.
    H. Goldschmidt, Verfahren zur Herstellung von Metallen oder Metalloiden oder Legierungen derselben, Germ. Patent No. 96317 (1895)Google Scholar
  106. 106.
    G.F. Henning, Verfahren zur Darstellung eines Nitrokörpers aus Hexamethylentetramin, Germ. Patent No. 104280 (1898) Google Scholar
  107. 107.
    A.H. Smyth, The writings of Benjamin Franklin (Haskell House Publ., New York, 1970), Vol. II, pp. 423–426 Google Scholar
  108. 108.
    J.C. Wilcke, Des Herrn Benjamin Franklin’s Esq. Briefe von der Electricität (Kiesewetter, Leipzig, 1758)Google Scholar
  109. 109.
    Forsyth, Alexander John, Encyclopaedia Britannica, Micropaedia, Vol. IV, p. 237 (1974)Google Scholar
  110. 110.
    F. Pflug, Nikolaus Von Dreyse und die Geschichte des preußischen Zündnadelgewehrs (Haude & Spener, Berlin, 1866)Google Scholar
  111. 111.
    W. Bickford, Safety fuze for igniting gunpowder used in blasting rocks, &, Brit. Patent No. 6159 (1831) Google Scholar
  112. 112.
    A. Nobel, Nitroglycerine, Brit. Patent No. 1813 (1864)Google Scholar
  113. 113.
    J.H. Norrbin, J. Ohlsson, Sätt och medel för tillblandning af sprängämnen samt för deras förvaring och antändning (“Methods and means for mixing explosives and their storage and ignition”), Swed. Patent No. 188 (1867)Google Scholar
  114. 114.
    F.A. Abel , On colliery explosions, Chem. News 44, 16–18; 27–31; 39–42 (1881)Google Scholar
  115. 115.
    J.D. Kinley, Call Kinley. Adventures of an oil well firefighter (Cock-A-Hoop Publ., Tulsa, OK, 1995), pp. 16–20 Google Scholar
  116. 116.
    Oil springs in Canada, The Practical Mechanic’s J. 2 [III], 323 (1867) Google Scholar
  117. 117.
    A brief introduction and history of oil well shooting in the United States was provided by Analog Service Inc., Fordsville, KY (2000); see http://www.logwell.com
  118. 118.
    H. Barnes, Some physical properties of icebergs and a method for their destruction, Proc. Roy. Soc. Lond. A 114, 161–168 (1927)ADSCrossRefGoogle Scholar
  119. 119.
    R. Mallet, Second report on the facts of earthquake phenomena, Rept. Meet. Brit. Assoc. 21, 272–320 (1851)Google Scholar
  120. 120.
    R. Mallet, Account of experiments made at Holyhead (North Wales) to ascertain the transit-velocity of waves, analogous to earthquake waves, through the local rock formations, Philos. Trans. Roy. Soc. Lond. 151, 655–679 (1861)CrossRefGoogle Scholar
  121. 121.
    R. Mallet , Philos. Trans. Roy. Soc. Lond. 152, 663–676 (1862)CrossRefGoogle Scholar
  122. 122.
    H.L. Abbot, On the velocity of transmission of earth waves, Am. J. Sci. 15, 178–184 (1878)Google Scholar
  123. 123.
    W.E. Parry, Journal of the third voyage for the discovery of a North-West Passage from the Atlantic to the Pacific; performed in the years 1824–1825, in His Majesty’s ships “Hecla” and “Fury”, under the orders of W.E. Parry (J. Murray, London, 1826), see Experiments to determine the rate at which sound travels at various temperatures and pressures of the atmosphere, Appendix, p. 86Google Scholar
  124. 124.
    M. Mersenne, De l’utilité de l’harmonie (S. Cramoisy, Paris, 1636), p. 44Google Scholar
  125. 125.
    E. Mach, L. Mach, Über die Interferenz von Schallwellen von großer Excursion, Sitzungsber. Akad. Wiss. Wien 98, 1333–1336 (1889)Google Scholar
  126. 126.
    B. Robins, New principles of gunnery (J. Nourse, London, 1742), republ. by Richmond Publ. Co., Richmond, Surrey, UK (1972)Google Scholar
  127. 127.
    E. Mach, P. Salcher, Photographische Fixierung der durch Projectile in der Luft eingeleiteten Vorgänge, Sitzungsber. Akad. Wiss. Wien 95, 764–780 (1887)Google Scholar
  128. 128.
    T. von Kármán, N.B. Moore, The resistance of slender bodies moving with supersonic velocities with special reference to projectiles, Trans. ASME 54, 303–310 (1932)Google Scholar
  129. 129.
    E. Mach , P. Salcher , Über die in Pola und Meppen angestellten ballistisch-photographischen Versuche, Sitzungsber. Akad. Wiss. Wien 98 (IIa), 41–50 (1889)Google Scholar
  130. 130.
    A.J.C. de Saint-Venant, P.L. Wantzel, Mémoire et expériences sur l’écoulement de l’air, J. Ecole Polytech. (Paris) 16, 85–122 (1839) Google Scholar
  131. 131.
    P. Salcher , J. Whitehead , Über den Ausfluß stark verdichteter Luft. Sitzungsber, Akad. Wiss. Wien 98 (IIa), 267–287 (1889)Google Scholar
  132. 132.
    C.G.P. de Laval, Turbine, Swed. Patent No. 325 (1883)Google Scholar
  133. 133.
    C.G.P. de Laval, Steam inlet channel for rotating steam engines, Swed. Patent No. 1902 (1888)Google Scholar
  134. 134.
    L. Mach , Weitere Versuche über Projektile, Sitzungsber. Akad. Wiss. Wien 105 (IIa), 605–633 (1896)Google Scholar
  135. 135.
    L. Mach , Optische Untersuchung der Luftstrahlen, Sitzungsber. Akad. Wiss. Wien 106 (IIa), 1025–1074 (1897)Google Scholar
  136. 136.
    A. Fliegner , Noch einmal die Düse der De Laval’schen Dampfturbine, Schweiz. Bauz. XLI, 175–177 (1903) Google Scholar
  137. 137.
    A. Fliegner , Beiträge zur Dynamik der elastischen Flüssigkeit, Schweiz. Bauz. XLVII, 30–32; 41–46; 103–110 (1906)Google Scholar
  138. 138.
    L. Prandtl, Über stationäre Wellen in einem Gasstrahl, Physik. Z. 5, 599–601 (1904) Google Scholar
  139. 139.
    L. Prandtl, Beiträge zur Theorie der Dampfströmung durch Düsen, VDI-Z. 48, 348–350 (1904)Google Scholar
  140. 140.
    L. Prandtl, Neue Untersuchungen über die strömende Bewegung der Gase und Dämpfe, Physik. Z. 8, 23–30 (1907) Google Scholar
  141. 141.
    T. Meyer, Über zweidimensionale Bewegungsvorgänge in einem Gas, das mit Überschallgeschwindigkeit strömt (Ph.D. thesis, University of Göttingen, 1908)Google Scholar
  142. 142.
    Deutsche Waffen- und Munitionsfabrik (DWM), Berlin: Spitzgeschoß für Handfeuerwaffen, Germ. Patent No. 204660 (1908) Google Scholar
  143. 143.
    G.B. Airy , The Astronomer Royal’s remarks on Prof. Challis’ theoretical determination of the velocity of sound, Philos. Mag. 32 [III], 339–343 (1848)Google Scholar
  144. 144.
    J. Challis , Theoretical determination of the velocity of sound, Philos. Mag. 32 [III], 276–284 (1848) Google Scholar
  145. 145.
    J. Challis , On the velocity of sound, in reply to the remarks of the Astronomer Royal, Philos. Mag. 32 [III], 494–499 (1848)Google Scholar
  146. 146.
    G.G. Stokes , On a difficulty in the theory of sound, Philos. Mag. 33 [III], 349–356 (1848)Google Scholar
  147. 147.
    S. Earnshaw, On the mathematical theory of sound, Philos. Trans. Roy. Soc. Lond. 150, 133–148 (1860)CrossRefGoogle Scholar
  148. 148.
    B. Riemann , Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abhandl. Königl. Gesell. Wiss. Gött. 8 [Math.-Physik. Kl.], 243–265 (1860)Google Scholar
  149. 149.
    W.J.M. Rankine, On the thermodynamic theory of waves of finite longitudinal disturbance, Philos. Trans. Roy. Soc. Lond. 160, 277–286 (1870)CrossRefGoogle Scholar
  150. 150.
    P.H. Hugoniot, Mémoire sur la propagation du mouvement dans les corps et plus spécialement dans les gaz parfaits. 1èrePartie, J. Ecole Polytech. (Paris) 57, 3–97 (1887) Google Scholar
  151. 151.
    P.H. Hugoniot, Mémoire sur la propagation du mouvement dans les corps et plus spécialement dans les gaz parfaits. 2e Partie, J. Ecole Polytech. (Paris) 58, 1–125 (1889) Google Scholar
  152. 152.
    P. Vieille, Sur les discontinuités produites par la détente brusque des gaz comprimés, C. R. Acad. Sci. Paris 129, 1228–1230 (1899)Google Scholar
  153. 153.
    P. Vieille, Étude sur le rôle des discontinuités dans les phénomènes de propagation, Mém. Poudres Salpêtres 10, 177–260 (1900)Google Scholar
  154. 154.
    P. Vieille, Étude des pressions ondulatoires produites en vase clos par les explosifs, Mém. Poudres Salpêtres 3, 177–236 (1890) Google Scholar
  155. 155.
    T.E. Stanton, The development of a high-speed wind tunnel for research in external ballistics, Proc. Roy. Soc. Lond. A 131, 122–132 (1931)ADSCrossRefGoogle Scholar
  156. 156.
    D.L. Chapman, On the rate of explosion in gases, Philos. Mag. 47, 90–104 (1899) Google Scholar
  157. 157.
    J.C.E. Jouguet, Sur l’onde explosive, C. R. Acad. Sci. Paris 139, 121–124 (1904)Google Scholar
  158. 158.
    J.C.E. Jouguet, Sur la propagation des réactions chimiques dans les gaz, J. Math. Pures Appl. 1, 347–425 (1905) Google Scholar
  159. 159.
    J.C.E. Jouguet , J. Math. Pures Appl. 2 [VI], 5–86 (1906)Google Scholar
  160. 160.
    V.A. Mikhel’son, On the normal ignition velocity of explosive gaseous mixtures [in Russ.], Ph. D. thesis. Moscow University Printing Service, Moscow (1890); republ. in: Scient. Papers of the Moscow Imperial University on Mathematics & Physics 10, pp. 1–93 (1893) Google Scholar
  161. 161.
    K.I. Shchelkin, Y.K. Troshin, Gasdynamics of combustion [in Russ.], Izd. Akad. Nauk SSSR, Moskva (1963)Google Scholar
  162. 162.
    R. Mallet, Account of experiments made at Holyhead (North Wales) to ascertain the transit-velocity of waves, analogous to earthquake waves, through the local rock formations, Philos. Trans. Roy. Soc. Lond. 151, 655–679 (1860)Google Scholar
  163. 163.
    H. Schardin, Die Schlierenverfahren und ihre Anwendungen, Ergebn. Exakt. Naturwiss. 20, 303–349 (1942)CrossRefGoogle Scholar
  164. 164.
    D.W. Holder, R.J. North, A schlieren apparatus giving an image in color, Nature 169, 466 (1952) ADSCrossRefGoogle Scholar
  165. 165.
    D.W. Holder, R.J. North, Colour in the wind-tunnel, The Aeroplane 82 (1952)Google Scholar
  166. 166.
    D.W. Holder, R.J. North, Optical methods for examining the flow in high-speed wind tunnels, AGARDograph No. 23 (AGARD NATO, Paris, 1956)Google Scholar
  167. 167.
    D. Gabor, Holography, 1948–1971 [Nobel Lecture, presented on Dec. 11, 1971], see http://www.nobel.se/physics/laureates/1971/gabor-lecture.pdf
  168. 168.
    R.D. Buzzard, Description of three-dimensional schlieren system, In: Proc. 8th Int. Congress on High-Speed Photography, Stockholm, Sweden, 1968 (Almquist & Wiksell, Stockholm, 1968), edited by N.R. Nillson, L. Högberg, pp. 335–340 Google Scholar
  169. 169.
    R.E. Brooks, L.O. Heflinger, R.F. Wuerker, Holographic photography of high-speed phenomena with conventional and Q-switched ruby lasers, Appl. Phys. Lett. 7, 92–94 (1965) ADSCrossRefGoogle Scholar
  170. 170.
    R.E. Brooks, L.O. Heflinger, R.F. Wuerker, Pulsed laser holograms, IEEE J. Quant. Electron. 8, 275–279 (1966) ADSCrossRefGoogle Scholar
  171. 171.
    W. Lauterborn, K. Hinsch, F. Bader, Holography of bubbles in water as a method to study cavitation bubble dynamics, Acustica 26, 170–171 (1972)Google Scholar
  172. 172.
    E.A. Feoktistova, Experimental observation of Mach reflection of detonation waves in a solid explosive, Sov. Phys. Dokl. 6, 162–163 (1961) ADSGoogle Scholar
  173. 173.
    G.R. Fowles, W.M. Isbell, Method for Hugoniot equation-of-state measurements at extreme pressures, J. Appl. Phys. 36, 1377–1379 (1965)ADSCrossRefGoogle Scholar
  174. 174.
    P.S. Theocaris, E. Marketos, W. Gillich, Shock wave propagation in Perspex spheres, Int. J. Mech. Sci. 8, 739–742 (1966) CrossRefGoogle Scholar
  175. 175.
    M. Kawahashi, H. Hirahara, Velocity and density field measurements by digital speckle method, Opt. Laser Technol. 32, 575–582 (2000)ADSCrossRefGoogle Scholar
  176. 176.
    J.C. Maxwell, On the equilibrium of elastic solids, Trans. Roy. Soc. Edinb. 20, 87–120 (1850) Google Scholar
  177. 177.
    R.A. East, Application of liquid crystal surface thermography to hypersonic flow, In: Proc. 18th Int. Symposium on Shock Waves, Sendai, Japan, 1991 (Springer, Berlin etc., 1992), edited by K. Takayama, pp. 643–650Google Scholar
  178. 178.
    E.J. Klein, Application of liquid crystals to boundary layer flow, AIAA 3rd Aerodynamic Testing Conference – Separate Papers (San Francisco, CA, April 1968); see AIAA Paper No. 68-0376 (1968)Google Scholar
  179. 179.
    V.P. Goddard, J.A. McLaughlin, F.N.M. Brown, A visual supersonic flow by means of smoke lines, J. Aerospace Sci. 26, 761–762 (1959)Google Scholar
  180. 180.
    J.M. Dewey, The properties of a blast wave obtained from an analysis of the particle trajectories, Proc. Roy. Soc. Lond. A 324, 275–299 (1971)ADSCrossRefGoogle Scholar
  181. 181.
    R. Schall, Die Zustandsgleichung des Wassers bei hohen Drucken nach Röntgenblitzaufnahmen intensiver Stoßwellen, Z. Angew. Phys. 2, 252–254 (1950) Google Scholar
  182. 182.
    R. Schall, G. Thomer, Röntgenblitzaufnahmen von Stoßwellen in festen, flüssigen und gasförmigen Medien, Z. Angew. Phys. 3, 41–44 (1951) Google Scholar
  183. 183.
    K.H. Herrmann, Röntgenblitzuntersuchungen an Funkenstoßwellen in Gasen, Z. Angew. Phys. 10, 349–356 (1958)Google Scholar
  184. 184.
    R. Schall, Feinstrukturaufnahmen in ultrakurzen Zeiten mit dem Röntgenblitzrohr, Z. Angew. Phys. 2, 83–88 (1950) Google Scholar
  185. 185.
    F. Jamet, G. Thomer, Diagramme de Laue en radiographie instantanée, C. R. Acad. Sci. B 271, 714–717 (1970)Google Scholar
  186. 186.
    Q. Johnson, A. Mitchell, R.N. Keeler, L. Evans X-ray diffraction during shock-wave compression, Phys. Rev. Lett. 25, 1099–1101 (1970)ADSCrossRefGoogle Scholar
  187. 187.
    F. Jamet, G. Thomer, Enregistrement de diagrammes de diffraction par impulsions de rayons X de matériaux soumis à une compression par onde de choc, In: Proc. 10th Int. Congress on High-Speed Photography, Nice, France, 1972, edited by E. Laviron (ANRT, Paris, 1973), pp. 292–294Google Scholar
  188. 188.
    Q. Johnson, A. Mitchell, First X-ray diffraction evidence for a phase transition during shock-wave compression, Phys. Rev. Lett. 29, 1369–1371 (1972)ADSCrossRefGoogle Scholar
  189. 189.
    F. Jamet, G. Thomer, Diagramme de poudre d’un jet de charge creuse, C. R. Acad. Sci. Paris 279, 501–503 (1974)Google Scholar
  190. 190.
    R.E. Green Jr., First X-ray diffraction photograph of a shaped charge jet, Rev. Sci. Instrum. 46, 1257–1261 (1975)ADSCrossRefGoogle Scholar
  191. 191.
    J.S. Wark, R.R. Whitlock, A.A. Hauer, J.E. Swain, Sub-nanosecond X-ray diffraction from laser-shocked crystals, Phys. Rev. B 40, 5705–5714 (1989)ADSCrossRefGoogle Scholar
  192. 192.
    R.E. Duff, E. Houston, Measurement of the Chapman-Jouguet pressure and reaction zone length in a detonating high explosive, In: Proc. 2nd Symposium (ONR) on Detonation [White Oak, MD, 1953], edited by L.D. Hampton, J. Savitt, L.E. Starr. Rept. AD-052 145, Office of Naval Research (ONR), Arlington, VA (1955), pp. 225–239Google Scholar
  193. 193.
    R.E. Duff, E. Houston, J. Chem. Phys. 23, 1268–1273 (1955)ADSCrossRefGoogle Scholar
  194. 194.
    R.W. Goranson et al., Dynamic determination of the compressibility of metals, J. Appl. Phys. 26, 1472–1479 (1955)ADSCrossRefGoogle Scholar
  195. 195.
    S. Minshall, Properties of elastic and plastic waves determined by pin contactors and crystals, J. Appl. Phys. 26, 463–469 (1955)ADSCrossRefGoogle Scholar
  196. 196.
    D.L. Schultz, T.V. Jones, Heat transfer measurements in short duration hypersonic facilities. AGARDograph No. 165 (1973)Google Scholar
  197. 197.
    J.D. Barnett, S. Block, G.J. Piermarini, An optical fluorescence system for quantitative pressure measurement in the diamond-anvil cell, Rev. Sci. Instrum. 44, 1–9 (1973) ADSCrossRefGoogle Scholar
  198. 198.
    A.T. Nielsen, Polycyclic amine chemistry. In: Chemistry of energetic materials, edited by G.A. Olah, D.R. Squire (Academic Press, San Diego, CA, 1991), pp. 95–124Google Scholar
  199. 199.
    M.X. Zhang, P.E. Eaton, R. Gilardi, Hepta- and octanitrocubanes, Angew. Chem. Int. Ed. 39, 401–404 (2000)CrossRefGoogle Scholar
  200. 200.
    C.E. Ragan III, M.G. Silbert, B.C. Diven, Shock compression of molybdenum to 2.0 TPa by means of a nuclear explosion, J. Appl. Phys. 48, 2860–2870 (1977)ADSCrossRefGoogle Scholar
  201. 201.
    R.F. Trunin et al., Measurement of the compressibility of iron at 5.5 TPa, Sov. Phys. JETP 75, 777–780 (1992)Google Scholar
  202. 202.
    R.F. Trunin et al., Determination of the shock compressibility of iron at pressures up to 10 TPa (100 Mbar), Sov. Phys. JETP 76, 1095–1098 (1993)ADSGoogle Scholar
  203. 203.
    R.F. Trunin et al., Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions, Phys. Uspekhi 37, 1123–1145 (1994)ADSCrossRefGoogle Scholar
  204. 204.
    A.F. Belajev, The production of detonation in explosives under the action of a thermal pulse [in Russ.], Dokl. AN (SSSR) 18, 267–269 (1938)Google Scholar
  205. 205.
    L.H. Johnston, Electric initiator with exploding bridge wire, US Patent No. 3040660 (filed Nov. 8, 1944, applied June 26, 1962)Google Scholar
  206. 206.
    M. Held, Schutzeinrichtung gegen Geschosse, Germ. Patent No. 2053345 (issued Oct. 1970, publ. Feb. 1977) Google Scholar
  207. 207.
    C.E. Munroe, On certain phenomena produced by the detonation of gun-cotton, Proc. Newport Natl. Hist. Soc. Rept. No. 6 (1883–1888)Google Scholar
  208. 208.
    C.E. Munroe, Wave-like effects produced by the detonation of gun-cotton, Am. J. Sci. 36, 48–50 (1888) Google Scholar
  209. 209.
    K. Butter, O. Butter, Niet, dessen Schließkopf durch Verformung mittels Sprengung gebildet wird, Germ. Patent No. 655669 (1935)Google Scholar
  210. 210.
    L.R. Carl, Brass welds, made by detonation impulse, Metal Progress 46, 102–103 (1944)Google Scholar
  211. 211.
    L.A. Jutkin, The electrohydraulic effect [in Russ.] (Masgiz, Moskva, 1955)Google Scholar
  212. 212.
    G. Nesvetailov, E. Serebriakov, Theory and practice of the electrohydraulic effect [in Russ.] (INTIP, Minsk, 1966) Google Scholar
  213. 213.
    F.P. Bundy et al., Man-made diamonds, Nature 176, 2–7 (July 9, 1955)CrossRefGoogle Scholar
  214. 214.
    F.P. Bundy et al., Direct conversion of graphite to diamond in static pressure apparatus, Science 137, 1057–1058 (1962)ADSCrossRefGoogle Scholar
  215. 215.
    F.P. Bundy et al., Direct conversion of graphite to diamond in static pressure apparatus, J. Chem. Phys. 38, 631–643 (1963)ADSCrossRefGoogle Scholar
  216. 216.
    P.S. DeCarli, J.C. Jamieson, Formation of diamond by explosive shock, Science 133, 1821–1822 (1961)ADSCrossRefGoogle Scholar
  217. 217.
    N.R. Greiner, D.S. Phillips, J.D. Johnson, F. Volk, Diamonds in detonation soot, Nature 433, 440–442 (1988)ADSCrossRefGoogle Scholar
  218. 218.
    E.W. La Rocca, J. Pearson, High pressure, explosive-activated press, US Patent No. 2948923 (1953)Google Scholar
  219. 219.
    E.W. La Rocca , J. Pearson, Explosive press for use in impulsive loading studies, Rev. Sci. Instrum. 29, 848–851 (1958)ADSCrossRefGoogle Scholar
  220. 220.
    B.M. Butcher, C.H. Karnes, Dynamic compaction of porous iron, J. Appl. Phys. 40, 2967–2976 (1969)ADSCrossRefGoogle Scholar
  221. 221.
    R.A. Prümmer, Explosive compaction of powders and composites (Science Publishers, Enfield, NH, 2006) Google Scholar
  222. 222.
    K. Takashima et al., Preparation of oxide superconducting coils by explosive compaction. edited by S.C. Schmidt, L.W. Davison, In: Proc. 6th APS Topical Conference on Shock Compression of Condensed Matter, Albuquerque, NM, 1989 (North-Holland, Amsterdam etc., 1990), pp. 591–594Google Scholar
  223. 223.
    M.B. Solomon, Dynamite recipe for tenderizing and sanitizing meat, USDA Beltsville Area Distinguished Lecture Series, US Dept. of Agriculture (USDA); http://www.ba.ars.usda.gov/lectures2003/solomon.html
  224. 224.
    Is it practical to destroy icebergs before they reach the shipping lanes?Int. Ice Patrol, US Coast Guard R&D Center, Groton, CT; http://www.uscg.mil/LANTAREA/IIP/FAQ/ReconnOp_5.shtml
  225. 225.
    K. König, I. Riemann, P. Fischer, K.J. Halbhuber, Intracellular nanosurgery with near infrared femtosecond laser pulses, Cell. Mol. Biol. 45, 195–201 (1999)Google Scholar
  226. 226.
    M. Delius et al., Tumor therapy with shock waves requires modified lithotripter shock waves, Naturwissenschaften 76, 573–574 (1989)ADSCrossRefGoogle Scholar
  227. 227.
    K. Lee et al., High energy shock waves enhance anti-tumor activity of cisplatin (DDP) murine bladder cancer (MBT-2), J. Urology 139, 326A (1988) Google Scholar
  228. 228.
    R.F. Randazzo et al., The in vitro and in vivo effects of extracorporeal shock waves on malignant cells, Urol. Res. 16, 419–426 (1988)CrossRefGoogle Scholar
  229. 229.
    A.A. Geldorf, H.J. Voogt, B.R. Rao, High energy shock waves do not affect either primary tumor growth or metastasis of prostate carcinoma, Urol. Res. 17, 9–12 (1989) Google Scholar
  230. 230.
    G. Robinson , On the disintegration of urinary calculi by the lateral disruptive force of the electrical discharge, Proc. Roy. Soc. Lond. 7, 99–102 (1854/1855)CrossRefGoogle Scholar
  231. 231.
    V. Goldberg , Zur Geschichte der Urologie: Eine neue Methode der Harnsteinzertrümmerung – elektrohydraulische Lithotripsie, Der Urologe 19 [B], 23–27 (1979)Google Scholar
  232. 232.
    W. Eisenmenger, Elektromagnetische Erzeugung von ebenen Druckstößen in Flüssigkeiten, In: Proc. 3rd Int. Congress on Acoustics, Stuttgart, Germany, 1959, edited by L. Cremer (Elsevier, Amsterdam, 1961), Part I, pp. 326–329Google Scholar
  233. 233.
    W. Eisenmenger, Elektromagnetische Erzeugung von ebenen Druckstößen in Flüssigkeiten, Acustica 12, 185–202 (1962)Google Scholar
  234. 234.
    E. Häussler, W. Kiefer, Nierensteinzertrümmerung mit geführten Stoßwellen, Annales Universitatis Saraviensis 11, 150–159 (1974)Google Scholar
  235. 235.
    C. Chaussy , W. Brendel , E. Schmiedt , Extracorporeally induced destruction of kidney stones by shock waves, The Lancet 316, No. 8207, 1265–1268 (1980)CrossRefGoogle Scholar
  236. 236.
    C.A. Puliafito , D. Stern , R.R. Krueger , E.R. Mandel , High-speed photography of excimer laser ablation of the cornea, Arch. Ophthalmol. 105, No. 9, 1255–1259 (1987)Google Scholar
  237. 237.
    L. Gerdesmeyer (ed.), Extrakorporale Stoßwellentherapie, Books on Demand, Norderstedt (2004); Extracorporeal shock wave therapy: technologies, basics, clinical results (Data Trace Publ., Towson, MD, 2007)Google Scholar
  238. 238.
    S. Lee, D.J. McAuliffe, T. Kodama, A.G. Doukas, In vivo transdermal delivery using a shock tube, Shock Waves 10, 307–311 (2000)ADSCrossRefGoogle Scholar
  239. 239.
    G. Jagadeesh, K. Takayama, Novel applications of micro-shock waves in biological sciences, J. Indian Inst. Sci. 82, 1–10 (2002) Google Scholar
  240. 240.
    E. Powers, War and the weather (E. Powers, Delavan, WI, 1890)Google Scholar
  241. 241.
    Meteorology: explosions make it rain, Nature 227, 995 (1970)Google Scholar
  242. 242.
    G.G. Goyer, Mechanical effects of a simulated lightning discharge on the water droplets of ‘Old Faithful’ Geyser, Nature 206, 1302–1304 (1965)ADSCrossRefGoogle Scholar
  243. 243.
    K. Harper, Weather and climate: decade by decade (Facts on File, New York, 2007), p. 98Google Scholar
  244. 244.
    R.H. Scott, W. Galloway, The connection between colliery explosions and weather, Nature 5, 504 (1872)CrossRefGoogle Scholar
  245. 245.
    E.K. Fedorov, On the influence of atomic explosions on meteorological processes, J. Nucl. Energy 5, 135–145 (1954) Google Scholar
  246. 246.
    I.R. Hurle, A. Hertzberg, Electronic population inversions by fluid-mechanical techniques, Phys. Fluids 8, 1601–1607 (1965)ADSCrossRefGoogle Scholar
  247. 247.
    J.D. Anderson Jr., Gasdynamic lasers: an introduction (Academic Press, New York etc., 1976)Google Scholar
  248. 248.
    S.C. Rashleigh, R.A. Marshall, Electromagnetic acceleration of macroparticles to high velocities, J. Appl. Phys. 49, 2540–2542 (1978)ADSCrossRefGoogle Scholar
  249. 249.
    High Energy Research and Technology Facility, FAS; see http://www.fas.org/spp/military/program/asat/herft.htm
  250. 250.
    L.N. Myrabo, Transatmospheric laser propulsion: lightcraft technology demonstrator, Final Tech. Rept, SDIO Laser Propulsion Program, Contract No. 2073803 (1989), pp. 117–142Google Scholar
  251. 251.
    L.N. Myrabo, Highways of light, Sci. Am. 280, 68–69 (1999) CrossRefGoogle Scholar
  252. 252.
    J. von Neumann, Oblique reflection of shocks. Navy Dept., Bureau of Ordnance, Explosives Res. Rept. No. 12, Washington, DC (Oct. 1943)Google Scholar
  253. 253.
    J. von Neumann, R.D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys. 21, 232–237 (1950)ADSMATHMathSciNetCrossRefGoogle Scholar
  254. 254.
    R. Courant, K. Friedrichs, H. Léwy, Über die partiellen Differentialgleichungen der mathematischen Physik, Math. Ann. 100, 32–74 (1928) MATHMathSciNetCrossRefGoogle Scholar
  255. 255.
    J. Barnes, The complete works of Aristotle (Bollingen Series LXXI, Princeton University Press, Guildford, Surrey, 1984)Google Scholar
  256. 256.
    L.A. Seneca, Naturales quaestiones [Books I-III]; Engl. translation by T.H. Corcoran, The Loeb Classical Library, Vol. 7 (Harvard University Press, Cambridge, MA, 1999)Google Scholar
  257. 257.
    C. Adam, Oeuvres de Descartes (Nouvelle édition, Vrin, Paris, 1996), Vol. 6: Discours de la méthode & essais, pp. 315–316Google Scholar
  258. 258.
    M. Mersenne, Cogitata physico-mathematica (A. Bertier, Paris, 1644); see Phenomena ballistica, Propositio XXXV, pp. 138–140Google Scholar
  259. 259.
    E. Mariotte, Harmonie universelle, contenant la théorie et la pratique de la musique. Livre VIII : Traité du mouvement des eaux et des autres corps fluides (E. Michallet, Paris, 1686) Google Scholar
  260. 260.
    C.M.V. Montigny, Note sur la vitesse du bruit du tonnerre, Bull. Acad. Sci. Brux. IX, 36–46 (1860) Google Scholar
  261. 261.
    C.M.V. Montigny, Observations sur l’accélération de la vitesse du bruit du tonnerre, Bull. Acad. Sci. Brux. X, 62–63 (1860) Google Scholar
  262. 262.
    F. Raillard, Sur le bruit du tonnerre, Cosmos (Paris) 16, 373–374 (1860)Google Scholar
  263. 263.
    F. Raillard , Du bruit du tonnerre, de ses variations ou de ses roulements, de sa vitesse &. Cosmos (Paris) 17, 166–172; 675–677 (1860)Google Scholar
  264. 264.
    M.A. Uman, A.H. Cookson, J.B. Moreland, Shock wave from a four-meter spark, J. Appl. Phys. 41, 3148–3155 (1970)ADSCrossRefGoogle Scholar
  265. 265.
    H.E. Bass, The propagation of thunder through the atmosphere, JASA 67, 1959–1966 (1980)Google Scholar
  266. 266.
    H.E. Bass, Atmospheric acoustics, edited by G.L. Trigg, In: Encyclopedia of applied physics (VCH, New York etc., 1991), Vol. 2, pp. 145–179Google Scholar
  267. 267.
    L.M. Weinstein, An optical technique for examining aircraft shock wave structures in flight, Proc. 3rd High-Speed Research Program Sonic Boom Workshop (Hampton, VA, 1994). Published in High-speed research: 1994 Sonic Boom Workshop – Atmospheric propagation and acceptability studies (Rept. NASA CP 3279, 1994), edited by D.A. McCurdy, pp. 1–17 Google Scholar
  268. 268.
    B. Bernstein, D.A. Hall, H.M. Trent, On the dynamics of a bull whip, JASA 30, 1112–1115 (1958)Google Scholar
  269. 269.
    P. Krehl, S. Engemann, D. Schwenkel, The puzzle of whip cracking – uncovered by a correlation of whip-tip kinematics with shock wave emission, Shock Waves 8, 1–9 (1998) ADSMATHCrossRefGoogle Scholar
  270. 270.
    R. Noble, D. Tremayne, Thrust: through the sound barrier (Bantam, Sydney and London, 1999)Google Scholar
  271. 271.
    C. Chaussy, F. Eisenberger, K. Wanner, The use of shock waves for the destruction of renal calculi without direct contact, Urological Res. 4, 181 (1976)Google Scholar
  272. 272.
    B.H. Pandya, G.S. Settles, J.D. Miller, Schlieren imaging of shock waves from a trumpet, JASA 114, 3363–3367 (2003)Google Scholar
  273. 273.
    D.R. White, An experimental survey of the Mach reflection of shock waves, Tech. Rept. II-10, Dept. of Physics (Princeton University, NJ, 1951)Google Scholar
  274. 274.
    E. Jacobs, Methods employed in America for the experimental investigation of aerodynamic phenomena at high speeds, V Convegno Volta su “Le alte velocità in aviazione” [Rome, Italy, Sept./Oct. 1935] (Reale Accademia d’Italia, Roma, 1936), pp. 369–401Google Scholar
  275. 275.
    R.P. Hallion, Supersonic flight: the story of the Bell X-1 and Douglas D-558 (Macmillan, New York, 1972)Google Scholar
  276. 276.
    A. Busemann, Aerodynamischer Auftrieb bei Überschallgeschwindigkeit. In: V Convegno Volta su “Le alte velocità in aviazione” [Rome, Italy, Sept./Oct. 1935] edited by G.A. Crocco (Reale Accademia d’Italia, Roma, 1936), pp. 328–360Google Scholar
  277. 277.
    A. Busemann , Luftfahrtforsch. 12, 210–220 (1935)Google Scholar
  278. 278.
    L. Prandtl, Allgemeine Überlegungen über die Strömung zusammendrückbarer Flüssigkeiten, V Convegno Volta su “Le alte velocità in aviazione” [Rome, Italy, Sept./Oct. 1935] (Reale Accademia d’Italia, Roma, 1936), pp. 168–197; 215–221Google Scholar
  279. 279.
    L. Prandtl , ZAMM 16, 129–142 (1936)MATHCrossRefGoogle Scholar
  280. 280.
    W. Bleakney, D.K. Weimer, C.H. Fletcher, The shock tube: a facility for investigations in fluid dynamics, Rev. Sci. Instrum. 20, 807–815 (1949)ADSCrossRefGoogle Scholar
  281. 281.
    W. Bleakney, A.H. Taub, Interaction of shock waves, Rev. Mod. Phys. 21, 584–605 (1949)ADSMATHMathSciNetCrossRefGoogle Scholar
  282. 282.
    C.E. Needham, Blast waves (Springer, Berlin & Heidelberg, 2010), pp. 293–294Google Scholar
  283. 283.
    H.S. Glick, W. Squire, A. Hertzberg, A new shock tube technique for the study of high temperature gas phase reactions, Proc. 5th Int. Symposium on Combustion, Pittsburgh, PA, Aug./Sept. 1954 (Reinhold, New York, 1955), pp. 393–402Google Scholar
  284. 284.
    A. Bar-Nun, N. Bar-Nun, S.H. Bauer, C. Sagan, Shock synthesis of amino acids in simulated primitive environments, Science 168, 470–473 (1970)ADSCrossRefGoogle Scholar
  285. 285.
    P.P. Wegener, The Peenemünde wind tunnels. A memoir (Yale University Press, New Haven, CT etc., 1996), pp. 69–70. Google Scholar
  286. 286.
    J.V. Becker, Results of recent hypersonic and unsteady flow research at the Langley Aeronautical Laboratory, J. Appl. Phys. 21, 619–628 (1950)ADSMATHCrossRefGoogle Scholar
  287. 287.
    P.P. Wegener, R.K. Lobb, NOL Hypersonic Tunnel No. 4 Results II: diffuser investigation, Rept. AD0895228 (NOL, White Oak, MD, 1952)Google Scholar
  288. 288.
    A. Hertzberg , A shock tube method of generating hypersonic flows, J. Aeronaut. Sci. 18, 803–804; 841 (1951)Google Scholar
  289. 289.
    A.H. Taub , Relativistic Rankine-Hugoniot equations, Phys. Rev. 74 [II], 328–334 (1948)ADSMATHMathSciNetCrossRefGoogle Scholar
  290. 290.
    R. Mallick, Solving the relativistic Rankine-Hugoniot condition in presence of magnetic field in astrophysical scenario (Cornell University Library, Ithaca, NY, 2010); see http://arxiv.org/abs/1012.5341
  291. 291.
    L.G. Smith, Photographic investigation of the reflection of plane shocks in air, Rept. OSRD-6271 (Palmer Physical Laboratory, Princeton University, NJ, 1945)Google Scholar
  292. 292.
    K. Takayama, Shock wave reflection over wedges: a benchmark test for CFD and experiments, Shock Waves 7, 191–203 (1997) ADSMATHCrossRefGoogle Scholar
  293. 293.
    G.A. Askar’yan , E.M. Moroz, Pressure on evaporation of matter in a radiation beam, Sov. Phys. JETP 16, 1638–1639 (1963)ADSGoogle Scholar
  294. 294.
    N.C. Holmes, Laser-generated shock waves and applications to advanced materials, NIRIM Int. Symposium on Advanced Materials 96 [Tsukuba, Japan, 1996], UCRL-JC-123211 (1996)Google Scholar
  295. 295.
    A.H. Clauer et al., Effects of laser induced shock waves on metals. In: Shock waves and high-strain rate phenomena in metals, edited by M.A. Meyers, L.E. Murr (Plenum Publ. Co., New York, 1981), see Chap. 38Google Scholar
  296. 296.
    R. Hofmann, R. Hartung, Laser-induced shock-wave lithotripsy of ureteric calculi, World J. Urology 7, 142–146 (1989) CrossRefGoogle Scholar
  297. 297.
    S.L. Trokel, R. Srinivasan, B. Braren, Excimer laser surgery of the corona, Am. J. Ophthalmol. 96, 710–715 (1983)Google Scholar
  298. 298.
    R. Srinivasan, Ablation of polymers and biological tissue by ultraviolet lasers, Science 234, 559–565 (1986)ADSCrossRefGoogle Scholar
  299. 299.
    P.W. Bridgman, The compression of 39 substances to 100 000 kg/cm2, Proc. Am. Acad. Arts Sci. 76, 55–70 (1948) Google Scholar
  300. 300.
    J.H. Cook, Engraving on metal plates by means of explosives, Research (Lond.) 1, 474–477 (1948) Google Scholar
  301. 301.
    G.E. Duvall, G.R. Fowles, Shock waves, In: High Pressure Physics and Chemistry, edited by R.S. Bradley (Academic Press, New York, 1963), Vol. 2, pp. 209–291Google Scholar
  302. 302.
    A.H. Jones, W.M. Isbell, C.J. Maiden, Measurement of the very-high-pressure properties of materials using a light-gas gun, J. Appl. Phys. 37, 3493–3499 (1966)ADSCrossRefGoogle Scholar
  303. 303.
    P. Honoré, Es begann mit der Technik (DVA, Stuttgart, 1969)Google Scholar
  304. 304.
    H.R. Hertz, Über die Berührung fester elastischer Körper und über die Härte, Verhandl. des Vereins zur Beförderung des Gewerbefleißes, Berlin 61, 449–463 (1882)Google Scholar
  305. 305.
    F. Kerkhof, H. Müller, Zur bruchmechanischen Deutung der Schlagmarken an Steingeräten, Glastech. Ber. 42, 439–448 (1969)Google Scholar
  306. 306.
    S. Winkler, D.A. Shockey, D.R. Curran, Crack propagation at supersonic velocities (Part I), Int. J. Fract. 6, 151–158 (1970) CrossRefGoogle Scholar
  307. 307.
    D.R. Curran, D.A. Shockey, S. Winkler, Theoretical model (Part II), Int. J. Fract. 6, 271–278 (1970) CrossRefGoogle Scholar
  308. 308.
    R.V. Gol’dshtein , N.P. Novikov, Supersonic crack propagation in blocks of polymethyl methacrylate, Mechanics of Composite Materials 7, 913–915 (1971) Google Scholar
  309. 309.
    A.J. Rosakis, O. Samudrala, D. Coker, Cracks faster than the shear wave speed, Science 284, 1337–1340 (1999)ADSCrossRefGoogle Scholar
  310. 310.
    S. Hao, W.K. Liu, P.A. Klein, A.J. Rosakis, Modeling and simulation of intersonic crack growth, Int. J. Solids Structures 41, 1773–1799 (2004)MATHCrossRefGoogle Scholar
  311. 311.
    M.J. Buehler, F.F. Abraham, H. Gao, Hyperelasticity governs dynamic fracture at a critical length scale, Nature 426, 141–146 (2003)ADSCrossRefGoogle Scholar
  312. 312.
    M.J. Buehler, Atomistic modeling of materials failure (Springer, New York, 2008)Google Scholar
  313. 313.
    F. Jamet, G. Thomer, Flash radiography (Elsevier, Amsterdam, 1976), p. 137Google Scholar
  314. 314.
    Y.B. Zel’dovich , On the theory of the propagation of detonation in gaseous systems [in Russ.], Zh. Eksp. Teor. Fiz. (SSSR) 10, 542–568 (1940); Rept. NACA-TM 1261 (1950)Google Scholar
  315. 315.
    W. Döring, Zur Theorie der Detonation, Ber. Nr. 5a, Ball. Inst. Techn. Akad. Luftwaffe (TAL), Berlin-Gatow (1941)Google Scholar
  316. 316.
    J. von Neumann, Theory of stationary detonation waves, Prog. Rept. OSRD-549 (1942)Google Scholar
  317. 317.
    W. Döring, Die Detonationswelle, In: Beiträge zur Theorie der Detonation, edited by W. Döring, G. Burkhardt. ZWB LFA Forschungsber. Nr. 1939 (Berlin-Adlershof, 1944), pp. 155–196 Google Scholar
  318. 318.
    W.A. Bone, R.P. Fraser, V. Photographic investigation of flame movements in carbonic oxide – oxygen explosions, Philos. Trans. Roy. Soc. Lond. A 228, 197–234 (1929)ADSCrossRefGoogle Scholar
  319. 319.
    W.A. Bone, R.P. Fraser, X. Photographic investigation of flame movements in gaseous explosions. Parts IV, V and VI, Philos. Trans. Roy. Soc. Lond. A 230, 363–385 (1932)ADSCrossRefGoogle Scholar
  320. 320.
    LLNL’s Sci. & Tech. Rev. (April 1999); http://www.llnl.gov/str/Walter.html
  321. 321.
    F. Dyson, Dynamic Universe, Nature 435, 1033 (2005) ADSCrossRefGoogle Scholar
  322. 322.
    V.F. Hess , Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten, Sitzungsber. Akad. Wiss. Wien 121 (IIa), 2001–2032 (1912)Google Scholar
  323. 323.
    E. Fermi, On the origin of the cosmic radiation, Phys. Rev. 75, 1169–1174 (1949)ADSMATHCrossRefGoogle Scholar
  324. 324.
    History: ultrahigh energy cosmic rays. Telescope Array project, University of Utah, Salt Lake City, UT; see http://www.telescopearray.org/outreach/uhecr.html
  325. 325.
    R. Naeye, Cosmic rays and supernova remnants, NASA Mission News (Aug. 28, 2008); see http://www.nasa.gov/mission_pages/GLAST/science/cosmic_rays.html
  326. 326.
    Chandra discovers relativistic pinball machine, Chandra X-Ray Observatory News Release (2006); see http://spacespin.org/article.php/chandra-relativistic-pinball-machine
  327. 327.
    V.P. Luchsinger, J. van Blois, Spin-offs from military technology: past and future, Int. J. Tech. Manag. 4, 21–29 (1989) Google Scholar
  328. 328.
    R.D. Richtmyer, Taylor instability in shock acceleration of compressible fluids, Tech. Rept. La-1914 (LASL, Los Alamos, NM, 1954)Google Scholar
  329. 329.
    R.D. Richtmyer , Comm. Pure Appl. Math. 13, 297–319 (1960)MathSciNetCrossRefGoogle Scholar
  330. 330.
    E.E. (Y.Y.) Meshkov , Instability of the interface of two gases accelerated by a shock wave [in Russ.], Izv. AN (SSSR) Mekhanika Zhidkosti i Gaza 4, 151–157 (1969) MathSciNetGoogle Scholar
  331. 331.
    E.E. (Y.Y.) Meshkov , Instability of the interface of two gases accelerated by a shock wave, Sov. Fluid Dynamics 4, 101–104 (1969) ADSMathSciNetCrossRefGoogle Scholar
  332. 332.
    F.H. Shelton, Reflections of a nuclear weaponeer (Shelton Enterprise, Colorado Springs, CO, 1988), Chap. 3, p. 36 Google Scholar
  333. 333.
    D.H. Parkinson, Defence research and civil spin-off, Phys. Technol. 18, 244–249 (1987)ADSCrossRefGoogle Scholar
  334. 334.
    Y.B. Zel’dovich , On the possibility of rarefaction shock waves [in Russ.], Zh. Eksp. Teor. Fiz. (SSSR) 16, 363–364 (1946)Google Scholar
  335. 335.
    S.S. Kutateladze et al., Experimental detection of a rarefaction shock wave near a liquid-vapor critical point, Sov. Phys. Dokl. 25, 392–393 (1980)ADSGoogle Scholar
  336. 336.
    Y.B. Zel’dovich, Y.P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena (Academic Press, New York, 1966–1967), see Vol. 2 (1967), pp. 757–762Google Scholar
  337. 337.
    L.R. Veeser et al., Spall strength and shock release kinetics following the alpha-epsilon phase transition in iron. In: Physics Division progress report 1999–2000, edited by T. Heinrichs. Rept. LA-13970 (LANL, Los Alamos, NN), pp. 140–145Google Scholar
  338. 338.
    H. Takabe et al., High-Mach number collisionless shock and photo-ionized non-local thermodynamic equilibrium plasma for laboratory astrophysics with intense lasers, Plasma Phys. Controlled Fusion 50, 124057 (2008) ADSCrossRefGoogle Scholar
  339. 339.
    Ship wakes. European Space Agency (ESA), Earth Observation Applications, Earthnet Online; see http://earth.esa.int/applications/ERS-SARtropical/oceanic/shipwakes/intro/index.html
  340. 340.
    Nuclear explosive and weapon safety program, DOE 5610.10 US Dept. of Energy, Washington, DC (Oct. 10, 1990), see http://www.fas.org/nuke/guide/usa/doctrine/doe/o5610_10.htm
  341. 341.
    W. Menke, H. Abend, D. Bach, K. Newman, V. Levin, Review of the source characteristics of the Great Sumatra-Andaman Islands Earthquake of 2004, Surveys in Geophysics 27, 603–613 (2006)ADSCrossRefGoogle Scholar
  342. 342.
    Military budget of the United States, see http://en.wikipedia.org/wiki/Military_budget of_the_United_States

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.NimburgGermany

Personalised recommendations