Skip to main content

Feynman’s interpretation of quantum theory

Abstract

A historically important but little known debate regarding the necessity and meaning of macroscopic superpositions, in particular those containing different gravitational fields, is reviewed and discussed from a modern perspective.

This is a preview of subscription content, access via your institution.

References

  1. Bacciagaluppi, Guido and Elise Crull. 2009. Heisenberg (and Schrödinger, and Pauli) on hidden varaibles. Stud. Hist. Phil. Mod. Phys. 40: 374–382

    Article  MATH  Google Scholar 

  2. Belinfante, Frederik Jozef. 1973. A Survey of Hidden Variables Theories. Pergamon Press, Oxford

  3. DeWitt, Bryce S. 1967. Quantum theory of gravity. I. Canonical theory. Phys. Rev. 160: 1113

    ADS  MATH  Article  Google Scholar 

  4. DeWitt, Cécile M. 1957. Conference on the Role of Gravitation in Physics, Wright Air Development Center report WADC TR 57-216 (Chapel Hill 1957) – Public Stinet Acc. Number AD0118180

  5. DeWitt, Cécile M. and Dean Rickles. 2011. The role of gravitation in physics: report from the 1957 Chapel Hill Conference. Sources of Max Planck Research Library for the History and Development of Knowledge; Sources 5, Edition Open Access, Berlin

  6. Dyson, Freeman. 1949. The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 75: 486–502

    ADS  MATH  Article  MathSciNet  Google Scholar 

  7. Everett, Hugh III. 1957. Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29: 454–462

    ADS  Article  MathSciNet  Google Scholar 

  8. Feynman, Richard Phillips. 1948. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20: 367–387

    ADS  Article  MathSciNet  Google Scholar 

  9. Feynman, Richard Phillips and Frank Lee Vernon. 1963. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. (N.Y.) 24: 118–173

    ADS  Article  Google Scholar 

  10. Giulini, Domenico, Claus Kiefer and H. Dieter Zeh. 1995. Symmetries, superselection rules, and decoherence. Phys. Lett. A 199: 291–298

    ADS  MATH  Article  MathSciNet  Google Scholar 

  11. Hawking, Stephen W. 2005. Information loss in black holes. Phys. Rev. D 72: 084013

    ADS  Article  MathSciNet  Google Scholar 

  12. Joos, Erich. 1986. Why do we observe a classical spacetime. Phys. Lett. 116: 6–8

    Article  MathSciNet  Google Scholar 

  13. Joos, Erich, H. Dieter Zeh, Claus Kiefer, Domenico Giulini, Joachim Kupsch and I.O. Stamatescu. 2003. Decoherence and the Appearance of a Classical World in Quantum Theory, Springer, Berlin

  14. Kiefer, Claus. 2007. Quantum Gravity, 2nd edn. Clarendon Press, Oxford

  15. Penrose, Roger. 1986. Quantum Concepts in Space and Time, edited by Christopher J. Isham and Roger Penrose. Clarenden Press, Oxford

  16. Poincaré, Henri. 1902. La science et l’hypothèse. Flammarion, Paris

  17. Schlosshauer, Maximilian and Kristian Camilleri. 2008. The quantum-to-classical transition: Bohr’s doctrine of classical concepts, emergent classicality, and decoherence. Report [arXiv:0804.1609] (unpublished)

  18. von Neumann, John. 1932. Mathematische Grundlagen der Quantenmechanik. Springer, Berlin, Chap. 6

  19. Wheeler, John Archibald. 1968. Battelle rencontres, edited by Bryce S. DeWitt and John A. Wheeler. Benjamin, New York

  20. Zeh, H. Dieter 2007. The Physical Basis of the Direction of Time, 5th edn. Springer, Berlin

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Zeh.

Additional information

Dedicated to the late John A. Wheeler — mentor of Richard Feynman, Hugh Everett, and many other great physicists.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zeh, H.D. Feynman’s interpretation of quantum theory. EPJ H 36, 63–74 (2011). https://doi.org/10.1140/epjh/e2011-10035-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2011-10035-2

Keywords

  • Wave Function
  • Quantum Theory
  • Path Integral Formalism
  • Superselection Rule
  • Quantum Amplitude