The European Physical Journal H

, Volume 36, Issue 1, pp 63–74 | Cite as

Feynman’s interpretation of quantum theory

Article

Abstract

A historically important but little known debate regarding the necessity and meaning of macroscopic superpositions, in particular those containing different gravitational fields, is reviewed and discussed from a modern perspective.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacciagaluppi, Guido and Elise Crull. 2009. Heisenberg (and Schrödinger, and Pauli) on hidden varaibles. Stud. Hist. Phil. Mod. Phys. 40: 374–382 CrossRefMATHGoogle Scholar
  2. 2.
    Belinfante, Frederik Jozef. 1973. A Survey of Hidden Variables Theories. Pergamon Press, OxfordGoogle Scholar
  3. 3.
    DeWitt, Bryce S. 1967. Quantum theory of gravity. I. Canonical theory. Phys. Rev. 160: 1113 ADSMATHCrossRefGoogle Scholar
  4. 4.
    DeWitt, Cécile M. 1957. Conference on the Role of Gravitation in Physics, Wright Air Development Center report WADC TR 57-216 (Chapel Hill 1957) – Public Stinet Acc. Number AD0118180Google Scholar
  5. 5.
    DeWitt, Cécile M. and Dean Rickles. 2011. The role of gravitation in physics: report from the 1957 Chapel Hill Conference. Sources of Max Planck Research Library for the History and Development of Knowledge; Sources 5, Edition Open Access, BerlinGoogle Scholar
  6. 6.
    Dyson, Freeman. 1949. The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 75: 486–502 ADSMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Everett, Hugh III. 1957. Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29: 454–462 ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Feynman, Richard Phillips. 1948. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20: 367–387 ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Feynman, Richard Phillips and Frank Lee Vernon. 1963. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. (N.Y.) 24: 118–173 ADSCrossRefGoogle Scholar
  10. 10.
    Giulini, Domenico, Claus Kiefer and H. Dieter Zeh. 1995. Symmetries, superselection rules, and decoherence. Phys. Lett. A 199: 291–298 ADSMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hawking, Stephen W. 2005. Information loss in black holes. Phys. Rev. D 72: 084013 ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Joos, Erich. 1986. Why do we observe a classical spacetime. Phys. Lett. 116: 6–8 CrossRefMathSciNetGoogle Scholar
  13. 13.
    Joos, Erich, H. Dieter Zeh, Claus Kiefer, Domenico Giulini, Joachim Kupsch and I.O. Stamatescu. 2003. Decoherence and the Appearance of a Classical World in Quantum Theory, Springer, BerlinGoogle Scholar
  14. 14.
    Kiefer, Claus. 2007. Quantum Gravity, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  15. 15.
    Penrose, Roger. 1986. Quantum Concepts in Space and Time, edited by Christopher J. Isham and Roger Penrose. Clarenden Press, OxfordGoogle Scholar
  16. 16.
    Poincaré, Henri. 1902. La science et l’hypothèse. Flammarion, ParisGoogle Scholar
  17. 17.
    Schlosshauer, Maximilian and Kristian Camilleri. 2008. The quantum-to-classical transition: Bohr’s doctrine of classical concepts, emergent classicality, and decoherence. Report [arXiv:0804.1609] (unpublished) Google Scholar
  18. 18.
    von Neumann, John. 1932. Mathematische Grundlagen der Quantenmechanik. Springer, Berlin, Chap. 6Google Scholar
  19. 19.
    Wheeler, John Archibald. 1968. Battelle rencontres, edited by Bryce S. DeWitt and John A. Wheeler. Benjamin, New York Google Scholar
  20. 20.
    Zeh, H. Dieter 2007. The Physical Basis of the Direction of Time, 5th edn. Springer, BerlinGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Universität HeidelbergHeidelbergGermany
  2. 2.WaldhilsbachGermany

Personalised recommendations