Advertisement

The European Physical Journal H

, Volume 35, Issue 3, pp 243–253 | Cite as

Discussion of the ‘axioms’ and the asymptotic properties of a local field theory with composite particles

  • Rudolf Haag
Historical document

Keywords

Physical Interpretation Composite Particle Vacuum Expectation French Translation Discrete Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13129_2010_41_MOESM1_ESM.pdf (1.8 mb)
Supplementary material, approximately 340 KB.

References

  1. 1.
    Deheuvels, R., and L. Michel (Eds). 1959. Les problèmes mathématiques de la théorie quantique des champs. Colloques internationaux du CNRS, Paris. Volume 75Google Scholar
  2. 2.
    Eckstein, H. 1956. Scattering in field theory. Nuovo Cim. 4 (5): 1017-1058CrossRefGoogle Scholar
  3. 3.
    Haag, Rudolf. 1955. On quantum field theories. Dan. Mat. Fys. Medd. 29 (12): 1-37MathSciNetGoogle Scholar
  4. 4.
    Haag, Rudolf. 1959. Discussion des « axiomes » et des propriétés asymptotiques d’une théorie des champs locales avec particules composés. In Les problèmes mathématiques de la théorie quantique des champs. Colloques internationaux du CNRS, Paris. Volume 75, pp. 151-162Google Scholar
  5. 5.
    Klein, Abraham. 1955. Scattering Matrix in the Heisenberg Representation for a System with Bound States. Progr. Theoret. Phys. 14 (6): 580-588zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Lehmann, Harry, Kurt Symanzik and Wolfhart Zimmermann. 1957. On the formulation of quantized field theories II. Nuovo Cim. 6: 319-355zbMATHCrossRefGoogle Scholar
  7. 7.
    Newton, T.D. and Eugene P. Wigner. 1949. Localized states for elementary systems. Rev. Mod. Phys. 21: 400-406zbMATHCrossRefADSGoogle Scholar
  8. 8.
    Nishijima, Kazuhiko. 1953. Many-body problem in quantum field theory. Progr. Theoret. Phys. 10 (5): 549-574zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Ruijgrok, Th.W. 1959. Un modèle exactement renormalisable de champs quantifiés. In Les problèmes mathématiques de la théorie quantique des champs. Colloques internationaux du CNRS, Paris. Volume 75, pp. 163-168Google Scholar
  10. 10.
    Sowjetische Arbeiten zur Funktionalanalysis 44. Beiheft zur “Sovjetwissenschaft”. 1954. Verlag Kultur und Fortschritt, BerlinGoogle Scholar
  11. 11.
    Van Hove, Leon. 1959. Quelques méthodes et problèmes de la théorie quantique des champs et interaction. In Les problèmes mathématiques de la théorie quantique des champs. Colloques internationaux du CNRS, Paris. Volume 75, pp. 39-55Google Scholar
  12. 12.
    Wightman, Arthur S. 1956. Quantum Field Theory in Terms of Vacuum Expectation Values. Phys. Rev. 101: 860-866zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Wightman, Arthur S. 1959. Quelques problèmes mathématiques de la théorie quantique relativiste. In Les problèmes mathématiques de la théorie quantique des champs. Colloques internationaux du CNRS, Paris. Volume 75, pp. 1-38Google Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • Rudolf Haag
    • 1
  1. 1.Waldschmidstrasse 4bSchliersee/NeuhausGermany

Personalised recommendations