The European Physical Journal H

, Volume 35, Issue 3, pp 263–307 | Cite as

Some people and some problems met in half a century of commitment to mathematical physics

  • Rudolf Haag
Personal recollection


Personnal recollection of half a century of Mathematical Physics.


Black Hole Mathematical Physic Local Observable Superselection Rule Wightman Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Araki, Huzihiro, Rudolf Haag and Bert Schroer. 1961. The determination of a local or almost local field from a given current. Nuovo Cim. 19 (1): 90-102zbMATHCrossRefGoogle Scholar
  2. 2.
    Araki, Huzihiro. 1963a. A lattice of von Neumann algebras associated with the quantum theory of a free Bose field. J. Math. Phys. 4: 1343-1362zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Araki, Huzihiro and E.J. Woods. 1963b. Representations of the canonical commutation relations describing a nonrelativistic infinite free Bose gas. J. Math. Phys. 4: 637-662CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Araki, Huzihiro. 1964a. Von Neumann algebras of local observables for a free scalar field. J. Math. Phys. 5: 1-13zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Araki, Huzihiro. 1964b. Type of von Neumann algebras associated to the free field. Prog. Theoret. Phys. 32: 956-965zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Araki, Huzihiro and Rudolf Haag. 1967. Collision cross sections in terms of local observables. Commun. Math. Phys. 4: 77-91CrossRefADSGoogle Scholar
  7. 7.
    Becchi, C., Rouet A. and Stora R.. 1975. Renormalization of the Abelian Higgs-Kibble model. Commun. Math. Phys. 42: 127-162CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Bekenstein, Jacob D. 1973. Black holes and entropy. Phys. Rev. D 7: 2333-2346CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Bell, John S. 1987. Speakable and Unspeakable in Quantum Mechanics. Cambridge Univ. PressGoogle Scholar
  10. 10.
    Bertlmann, R.A. and A. Zeilinger (Eds.). 2002. Quantum(Un)speakable. SpringerGoogle Scholar
  11. 11.
    Bisognano, Joseph J. and Wichmann Eyvind H.. 1976. On the duality condition for quantum fields. J. Math. Phys. 17: 303-321CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Bopp, Fritz and Rudolf Haag. 1950. Über die Möglichkeit von Spinmodellen. Zs. Naturforsch. 5a: 644-653ADSGoogle Scholar
  13. 13.
    Bopp, Fritz. 1955. Würfelbrettspiele, deren Steine sich quantenmechanisch bewegen. Zs. Naturforsch. 10a: 9-10Google Scholar
  14. 14.
    Borchers, Hans Jürgen, Rudolf Haag and Bert Schroer. 1963. The vacuum state in quantum field theory. Nuovo Cim. 29 (1): 148-162zbMATHCrossRefGoogle Scholar
  15. 15.
    Borchers, Hans Jürgen. 1965. Local rings and the connection of spin with statistics. Commun. Math. Phys. 1: 281-307zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Bratteli, Ola and Derek W. Robinson. 1979. Operator algebras and quantum statistical mechanics, Springer Heidelberg, New YorkGoogle Scholar
  17. 17.
    Brenig, Wilhelm and Rudolf Haag. 1959. Allgemeine Quantentheorie der Stossprozesse. Fortschr. Phys. 7: 183-242zbMATHCrossRefGoogle Scholar
  18. 18.
    Buchholz, Detley and Klaus Fredenhagen. 1982. Locality and the structure of particle states. Commun. Math. Phys. 84: 1-54zbMATHCrossRefADSGoogle Scholar
  19. 19.
    Buchholz, Detley and Wichmann Eyvind H.. 1986. Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys. 106: 321-344CrossRefGoogle Scholar
  20. 20.
    Buchholz, Detley, D’Antoni C. and Klaus Fredenhagen. 1987. The universal structure of local algebras. Commun. Math. Phys. 111: 123-135zbMATHCrossRefADSGoogle Scholar
  21. 21.
    Coester, Fritz and Rudolf Haag. 1960. Representation of States in a Field Theory with Canonical Variables. Phys. Rev. 117: 1137-1145CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Coleman, Sidney and Jeffrey Mandula. 1967. All possible symmetries of the S-Matrix. Phys. Rev. 159: 1251-1256zbMATHCrossRefADSGoogle Scholar
  23. 23.
    Connes, Alain. 1973. Une classification des facteurs de type III. Ann. Sci. Ecole Norm. Sup. 6: 133-252zbMATHMathSciNetGoogle Scholar
  24. 24.
    Dirac, P.A.M. 1938. Classical Theory of Radiating Electrons. Proc. R. Soc. Lond. A 167: 148-169CrossRefADSGoogle Scholar
  25. 25.
    Doplicher, Sergio, Rudolf Haag and John E. Roberts. 1969a. Fields, observables and gauge transformations I. Commun. Math. Phys. 13: 1-23 zbMATHCrossRefADSGoogle Scholar
  26. 26.
    Doplicher, Sergio, Rudolf Haag and Roberts John E.. 1969b. Fields, observables and gauge transformations II. Commun. Math. Phys. 15: 173-200zbMATHCrossRefADSGoogle Scholar
  27. 27.
    Doplicher, Sergio, Rudolf Haag and Roberts John E.. 1971. Local observables and particle statistics I. Commun. Math. Phys. 23: 199-230CrossRefADSGoogle Scholar
  28. 28.
    Doplicher, Sergio, Rudolf Haag and Roberts John E.. 1974. Local observables and particle statistics II. Commun. Math. Phys. 35: 49-85CrossRefADSGoogle Scholar
  29. 29.
    Doplicher, Sergio and Roberts John E.. 1989. Monoidal C*-categories and a new duality theory for compact groups. Invent. Math. 98: 157-218zbMATHCrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Doplicher, Sergio and Roberts John E.. 1990. Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 131: 51-107zbMATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Dürr, D., Goldstein S. and Zanghi N.. 1992. Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67: 843-907zbMATHCrossRefADSGoogle Scholar
  32. 32.
    Ekstein, H. 1956. Theory of timedependant scattering for multichannel processes. Phys. Rev. 101: 880-889zbMATHCrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Fell, J.M.G. 1960. The dual spaces of C*-algebras. Trans. Amer. Math. Soc. 94: 365-403zbMATHMathSciNetGoogle Scholar
  34. 34.
    Fredenhagen, Klaus and Rudolf Haag. 1987. Generally covariant quantum field theory and scaling limits. Commun. Math. Phys. 108: 91-115zbMATHCrossRefADSGoogle Scholar
  35. 35.
    Fredenhagen, Klaus, Rehren K.H. and Bert Schroer. 1989. Superselection sectors with braid group statistics and exchange algebras I. General theory. Commun. Math. Phys. 125: 201-226zbMATHCrossRefADSGoogle Scholar
  36. 36.
    Fredenhagen, Klaus and Rudolf Haag. 1990. On the Derivation of Hawking Radiation Associated with the Formation of a Black Hole. Commun. Math. Phys. 127: 273-284zbMATHCrossRefADSGoogle Scholar
  37. 37.
    Friedrichs, K.O. 1953. Mathematical Aspects of the Quantum Theory of Fields. Commun. Pure Appl. Math. 6: 1-72zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Gårding, L. and Arthur S. Wightman. 1954a. Representations of the anticommutation relations. Proc. Nat. Acad. Sci. 40: 617-621zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Gårding, L. and Arthur S. Wightman. 1954b. Representations of the commutation relations. Proc. Nat. Acad. Sci. 40: 622-626zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Glaser, Yurko and Källén G.. 1956. A model of an unstable particle. Nucl. Phys. 2 (6): 706-722Google Scholar
  41. 41.
    Green, H.S. 1953. A generalized method of field quantization. Phys. Rev. 90: 270-273zbMATHCrossRefADSGoogle Scholar
  42. 42.
    Haag, Rudolf. 1952. Der kanonische Formalismus in entarteten Fällen. Zamm 32 (7): 197-202zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Haag, Rudolf. 1954. Lecture Notes Copenhagen CERNT/RH1 53/54Google Scholar
  44. 44.
    Haag, Rudolf. 1955a. On Quantum Field Theories. DAN Mat. Fys. Medd. 29 (12)Google Scholar
  45. 45.
    Haag, Rudolf. 1955b. Die Selbstwechselwirkung des Elektrons. Zs. Naturforsch. 10a: 752-761ADSGoogle Scholar
  46. 46.
    Haag, Rudolf. 1958. Quantum Field Theories with Composite Particles and Asymptotic Conditions. Phys. Rev. 112: 669-673zbMATHCrossRefMathSciNetADSGoogle Scholar
  47. 47.
    Haag, Rudolf. 1959. Discussion des « axioms » et des propriétés asymptotiques d’une théorie des champs locale avec particules composées, In: Les problèmes mathématique de la Théorie quantique des champs (Lille 1957). Centre Nationale de la Recherche Scientifique, ParisGoogle Scholar
  48. 48.
    Haag, Rudolf and Bert Schroer. 1962a. The postulates of quantum field theory. J. Math. Phys. 3: 248-256zbMATHCrossRefADSGoogle Scholar
  49. 49.
    Haag, Rudolf. 1962b. The mathematical structure of the Bardeen-Cooper-Schrieffer model. Nuovo Cim. 25 (2): 287-299zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Haag, Rudolf and Daniel Kastler. 1964. An algebraic approach to quantum field theory. J. Math. Phys. 5: 848-861zbMATHCrossRefADSGoogle Scholar
  51. 51.
    Haag, Rudolf and Swieca J. André. 1965. When does a quantum field theory describe particles? Commun. Math. Phys. 1: 308-320zbMATHCrossRefMathSciNetADSGoogle Scholar
  52. 52.
    Haag, Rudolf, Nico M. Hugenholtz and Marinus Winnink. 1967. On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5: 215-236zbMATHCrossRefADSGoogle Scholar
  53. 53.
    Haag, Rudolf, Daniel Kastler and Trych-Pohlmeyer Ewa B.. 1974. Stability and equilibrium state. Commun. Math. Phys. 38: 173-193CrossRefADSGoogle Scholar
  54. 54.
    Haag, Rudolf, Lopuszanski Jan T. and Martin Sohnius. 1975. All possible generators of supersymmetries of the S-Matrix. Nucl. Phys. B 88: 257-274CrossRefADSGoogle Scholar
  55. 55.
    Haag, Rudolf, and Trych-Pohlmeyer Ewa B.. 1977. Stability properties of equilibrium states. Commun. Math. Phys. 56: 213-224CrossRefMathSciNetADSGoogle Scholar
  56. 56.
    Haag, Rudolf, Heide Narnhofer and Ulrich Stein. 1984. On quantum field theories in gravitational background. Commun. Math. Phys. 94: 219-238CrossRefADSGoogle Scholar
  57. 57.
    Haag, Rudolf. 1990. Fundamental irreversibility and the concept of events. Commun. Math. Phys. 132: 245-251zbMATHCrossRefMathSciNetADSGoogle Scholar
  58. 58.
    Haag, Rudolf and I. Ojima. 1995. On the problem of defining a specific theory within the frame of local quantum Physics. RIMS-1052 preprint, Kyoto UniversityGoogle Scholar
  59. 59.
    Haag, Rudolf. 1996. An Evolutionary Picture for Quantum Physics. Commun. Math. Phys. 180: 733-743zbMATHCrossRefMathSciNetADSGoogle Scholar
  60. 60.
    Haag, Rudolf. 1998. Objects, Events and Localization. ESI preprint 541: 1-23Google Scholar
  61. 61.
    Haag, Rudolf. 1999. Quantentheorie und die Teilung der Welt, Z. Naturforsch. 54 (1): 2-10MathSciNetGoogle Scholar
  62. 62.
    Haag, Rudolf. 2001. Quantum Physics and Reality, Z. Naturforsch. 56a: 76-82Google Scholar
  63. 63.
    Haag, Rudolf. 2004. Quantum Theory and the division of the World (revised translation). Mind and Matter 2 (2): 53-66Google Scholar
  64. 64.
    Haag, Rudolf. 2010. Discussion of the ‘axioms’ and the asymptotic properties of a local field theory with composite particles. Eur. Phys. J. H 35 (3) 243-253 DOI:  10.1140/epjh/e2010-10041-3 CrossRefGoogle Scholar
  65. 65.
    Hawking, Steven W. 1975. Particle creation by black holes. Commun. Math. Phys. 43: 199-220CrossRefMathSciNetADSGoogle Scholar
  66. 66.
    Heisenberg, Werner. 1961. Lee model and quantisation of non linear field equations. Nucl. Phys. 4: 532-563Google Scholar
  67. 67.
    Hund, Friedrich. 1961. Symmetriecharaktere von Termen bei Systemen mit gleichen Partikeln in der Quantenmechanik. Z. Phys. 43: 788-804ADSGoogle Scholar
  68. 68.
    Hund, Friedrich. 1961. Handbuch der Physik, Vol. XXIV, 2nd edn. Springer, BerlinGoogle Scholar
  69. 69.
    Jones, Vaughn F.R. 1961. Index for subfactors. Inventiones Mathematicae 72: 1-25CrossRefADSGoogle Scholar
  70. 70.
    Kubo, Ryogo. 1961. Statistical mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn 12: 570-586CrossRefMathSciNetADSGoogle Scholar
  71. 71.
    Lehmann, Harry, Kurt Symanzik and Wolfhart Zimmermann. 1961. Zur Formulierung quantisierter Feldtheorien. Nuovo Cim. 1 (1): 205-225CrossRefGoogle Scholar
  72. 72.
    Longo, R. 1961. Index of subfactors and statistics of quantum fields I. Invent. Math. 126: 217-247MathSciNetGoogle Scholar
  73. 73.
    Longo, R. 1961. Index of subfactors and statistics of quantum fields II: Correspondences, braid group statistics and Jones polynomial. Invent. Math. 130: 285-309MathSciNetGoogle Scholar
  74. 74.
    Martin, Paul C. and Julian Schwinger. 1961. Theory of many particle systems. I. Phys. Rev. 115: 1342-1373CrossRefADSGoogle Scholar
  75. 75.
    Nishijima, Kazuhiko. 1961. Formulation of Field Theories of Composite Particles. Phys. Rev. 111: 995-1011CrossRefMathSciNetADSGoogle Scholar
  76. 76.
    Pusz, W. and Woronowicz S.L. 1961. Passive states and KMS-states for general quantum systems. Commun. Math. Phys. 58: 273-290CrossRefMathSciNetADSGoogle Scholar
  77. 77.
    Rehren, Karl-Henning. 1961. Field Operators for anyons and plektons. Commun. Math. Phys. 145: 123-148CrossRefMathSciNetADSGoogle Scholar
  78. 78.
    Rehren, K.H. 1961. On the range of the index of subfactors. J. Funct. Anal. 134: 183-193CrossRefMathSciNetGoogle Scholar
  79. 79.
    Rindler, W. 1961. Kruskal space and the uniformly accelerated frame. Am. J. Phys. 34: 1174-1178CrossRefMathSciNetADSGoogle Scholar
  80. 80.
    Rohrlich, Fritz T. 1961. Classical charged particles. Adison-Wesley Publ., Reading, MassachusettsGoogle Scholar
  81. 81.
    Ruelle, David. 1961. On the Asymptotic Condition in Quantum Field Theory. Helv. Phys. Acta 35: 147-163MathSciNetGoogle Scholar
  82. 82.
    Schroer, Bert. 1961. Infrateilchen in der Quantenfeldtheorie. Fortsch. Phys. 1: 1-31MathSciNetGoogle Scholar
  83. 83.
    Stapp, Henry Pierce. 1961. Theory of Reality. Found. Phys. 7: 313-323Google Scholar
  84. 84.
    Stapp, Henry Pierce. 1961. Whiteheadian Approach to Quantum theory and Generalized Bell’s Theorem. Found. Phys. 9: 1-25CrossRefMathSciNetADSGoogle Scholar
  85. 85.
    Takesaki, Masamichi. 1961. Tomita’s theory of modular Hilbert algebras and its application. Lecture Notes in Mathematics, Vol. 2. Springer-Verlag, BerlinGoogle Scholar
  86. 86.
    Unruh, W.G. 1961. Notes on black hole evaporation. Phys. Rev. D 14: 870-892CrossRefADSGoogle Scholar
  87. 87.
    von Neumann, J. 1961. On infinite direct product. Comp. Math. 6: 1-77MathSciNetGoogle Scholar
  88. 88.
    Weizsäcker, Karl Friedrich von. 1961. Probability and Quantum Mechanics. Brit. J. Phil. Set. 24, 321-337CrossRefGoogle Scholar
  89. 89.
    Whitehead, A.N. 1961. Process and Reality. An Essay in Cosmology. Mcmillan Publ. Co. Inc.Google Scholar
  90. 90.
    Wick, J.C. , Arthur S. Wightman and Eugene P. Wigner. 1961. The intrinsic parity of elementary particles. Phys. Rev. 88: 101-105CrossRefGoogle Scholar
  91. 91.
    Wigner, Eugene P. 1961. On unitary representations of the inhomogeneous Lorentz Group. Annals of Mathematics 40 (1): 149-204CrossRefMathSciNetGoogle Scholar
  92. 92.
    Wigner, Eugene. 1961. Remarks on the mind-body question. In: Symmetries and Reflections. Indiana Univ. Press, BloomingtonGoogle Scholar
  93. 93.
    Zimmermann, Wolfhart. 1961. On the Bound State Problem in Quantum Field Theory. Nuovo Cim. 10 (4): 597-614CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • Rudolf Haag
    • 1
  1. 1.Waldschmidstrasse 4bSchliersee/NeuhausGermany

Personalised recommendations