Advertisement

The European Physical Journal H

, Volume 35, Issue 1, pp 89–109 | Cite as

The origins and abundances of the chemical elements before 1957: from Prout’s hypothesis to Pasadena

  • Virginia Trimble
Article
  • 154 Downloads

Abstract.

The 1957 papers by Burbidge, Burbidge, Fowler, and Hoyle and by Cameron are generally regarded as the foundations upon which our modern understanding of nucleosynthesis has been erected. They were, however, also the capstones of an extended period of investigation of the composition of the cosmos (earth, sun, and beyond) and of the processes that might have given rise to that composition, dating back at least as far as 1885, that is longer before 1957 than “now” is after 1957.

Keywords

Chemical Element Heavy Element Stellar Evolution Helium Abundance Nuclear Astrophysics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allison S.K., Harkins W.D., The Absence of Helium from The gases left after the passage of electrical discharges: I, between fine wires in a vacuum; II, through hydrogen and III, through mercury vapor, J. Amer. Chem. Soc. 46, 814 (1924)CrossRefGoogle Scholar
  2. 2.
    Alpher R.A., Bethe H., Gamow G., The origin of chemical elements, Phys. Rev. 73, 803 (1948)ADSCrossRefGoogle Scholar
  3. 3.
    Alpher R.A., Follin J.W., Herman R.C., Physical conditions in the initial stages of the expanding universe, Phys. Rev. 92, 1347 (1953)zbMATHADSCrossRefGoogle Scholar
  4. 4.
    Alpher R.A., Herman R.C., Theory of the origin and relative abundance distribution of the elements, Rev. Mod. Phys. 22, 153 (1950)zbMATHADSCrossRefGoogle Scholar
  5. 5.
    Arrhenius S., Cosmic chemical processes, Z. Elektrochem. 28, 405 (1922)Google Scholar
  6. 6.
    Aston F.W., The mass-spectra of chemical elements, Phil. Mag. 39, 611 (1920)Google Scholar
  7. 7.
    Aston F.W., Atomic species and their abundance on the earth, Nature 113, 393 (1924)ADSCrossRefGoogle Scholar
  8. 8.
    Aston F.W., Bakerian Lecture – A new mass-spectrograph and the whole number rule, Proc. Roy. Soc. A 115, 487-U8 (1927) Google Scholar
  9. 9.
    Atkinson R.d’E. , Atomic synthesis and stellar energy, II. Astrophys J. 73, 308 (1931)ADSCrossRefGoogle Scholar
  10. 10.
    Atkinson R.d’E. , Houtermans F., Zur frage der aufbaumöglichkeit der elemente in Sternen, Z. Phys. A 54, 656 (1929)Google Scholar
  11. 11.
    Baade W., The resolution of Messier 32, NGC 205, and the central region of the Andromeda Nebula, Astrophys. J. 100, 137 (1944)ADSCrossRefGoogle Scholar
  12. 12.
    Barnothy J.M., Astronomical cconsequences of the Fib Theory, Publ. Astron. Soc. Pac. 75, 436 (1963)CrossRefGoogle Scholar
  13. 13.
    Barnothy J., Forro M., Csillagszari Lapok 7, 65 (1946)Google Scholar
  14. 14.
    Beskov G., Treffenberg L., On the so-called prestellar state of matter and the abundance distribution of chemical elements I. The influence of excited states, Arkiv. Mat. Astro. Fys. A 34, 17 (1947)Google Scholar
  15. 15.
    Bethe H.A., Energy production in stars, Phys. Rev. 55, 434 (1939)zbMATHADSCrossRefGoogle Scholar
  16. 16.
    Bethe H.A., My Life in astrophysics, Ann. Rev. Astron. Astrophys. 41, 1 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Bethe H.A., Critchfield C., The Formation of deuterons by proton combination, Phys. Rev. 54, 248 (1938)ADSCrossRefGoogle Scholar
  18. 18.
    Blau M., El Helio: Su Origen y su Localizacion, Ciencia (Mexico) 1, 265 (1940)Google Scholar
  19. 19.
    Bowen I.S., Wyse A.B., The Spectra and Chemical Composition of the Gaseous Nebulae, Lick. Obs. Bull. 19, 1 (1938)ADSGoogle Scholar
  20. 20.
    Brown H., A table of relative abundances of nuclear species, Rev. Mod. Phys. 21, 625 (1949)ADSCrossRefGoogle Scholar
  21. 21.
    Brush S., Transmuted past: the age of the earth and the evolution of the elements from Lyell to Patterson(Cambridge Univ. Press, 1996)Google Scholar
  22. 22.
    Burbidge E.M., Watcher of the skies, Ann. Rev. Astron. Astrophys. 32, 1 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    Burbidge G., An accidental career, Ann. Rev. Astron. Astrophys. 45, 1 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    Burbidge E.M., Burbidge G.R., Fowler W.A., Hoyle, Synthesis of the elements in stars, Rev. Mod. Phys. 29, 547 (1957)ADSCrossRefGoogle Scholar
  25. 25.
    Cameron A.G.W., Stellar evolution, nuclear astrophysics, and nucleogenesis. Chalk River Report CHR-41, Atomic energy of Canada Limited (1957)Google Scholar
  26. 26.
    Cameron A.G.W., Stellar evolution, nuclear astrophysics, and nucleogenesis, Publ. Astron. Soc. Pacific 69, 201 (1957)ADSCrossRefGoogle Scholar
  27. 27.
    Cameron A.G.W., Adventures in cosmogony, Ann. Rev. Astron. Astrophys. 37, 1 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Chamberlain J.W., Aller L.H., The Atmospheres of A-type Subdwarfs and 95 Leonis, Astrophys. J. 114, 52 (1951)ADSCrossRefGoogle Scholar
  29. 29.
    Clarke F.W., The relative abundances of the chemical elements, Bull. Phil. Soc. Wash. 11, 131 (1892)Google Scholar
  30. 30.
    Crookes W., Presidential address to the Royal Society, Chemical Section, Chem. News 45, 115 (1886)Google Scholar
  31. 31.
    Crookes W., J. Chem. Soc. (London) 487 (1888) Google Scholar
  32. 32.
    Crookes W., Recent research on the rare earth elements, Chem. News 60, 27, 39, 51, 63 (1889)Google Scholar
  33. 33.
    Dunbar D.N.F., Pixley R.E., Wenezl W.A., The 7.68-Mev state in C12, Phys. Rev. 92, 649 (1953)ADSCrossRefGoogle Scholar
  34. 34.
    Eddington A.S., Sources of Stellar Energy, Observatory 42, 371 (1919)ADSGoogle Scholar
  35. 35.
    Eddington A.S., 88th meeting, Br. Assoc. Reports (1920), pp. 34, 45Google Scholar
  36. 36.
    Eddington A.S., The internal constitution of the stars(Cambridge Science Classics, 1926), Chap. 5Google Scholar
  37. 37.
    Eddington A.S., Hydrogen content of the stars, MNRAS 92, 471 (1932)ADSGoogle Scholar
  38. 38.
    Farkas L., Harteck P., Thermodynamische Bemerkungen zur Enstehung der Elemente, Naturwiss 19, 705 (1931)ADSCrossRefGoogle Scholar
  39. 39.
    Fermi E., Turkevich A., cited by Gamow , On relativistic cosmogony, Rev. Mod. Phys. 21, 367 (1949) and by Alpher and Herman, Theory of the Origin and Relative Abundance Distribution of the Elements, Rev. Mod. Phys. 22, 153 (1950)CrossRefGoogle Scholar
  40. 40.
    Fock V., Z. Phys. 39, 226 (1926)ADSCrossRefGoogle Scholar
  41. 41.
    Fowler W.A., From steam to stars to the early universe, Ann. Rev. Astron. Astrophys. 30, 1 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    Gamow G., Zur Quantentheorie der Atomkernen, Z. Phys. 51, 2004 (1928)Google Scholar
  43. 43.
    Gamow G., Zur Quantentheorie der Atomzertrümmerung, Z. Phys. 52, 510 (1928)ADSGoogle Scholar
  44. 44.
    Gamow G., Nuclear transformations and the origin of the chemical elements, Ohio J. Sci. 35, 406 (1935)Google Scholar
  45. 45.
    Gamow G., The structure of atomic nuclei and nuclear transformation(Oxford Univ. Press., 1937), Vol. 235Google Scholar
  46. 46.
    Gamow G., Nuclear energy sources and Stellar evolution, Phys. Rev. 53, 595 (1938)zbMATHADSCrossRefGoogle Scholar
  47. 47.
    Gamow G., Expanding universe and the origin of elements. Phys. Rev. 70, 572 (1946)ADSCrossRefGoogle Scholar
  48. 48.
    Gamow G., On relativistic cosmogony, Rev. Mod. Phys. 21, 367 (1949)ADSCrossRefGoogle Scholar
  49. 49.
    Gamow G., Houtermans F., Zur Quantenmechanik der radioaktiven Kerns, Z. Phys. 52, 496 (1928)ADSGoogle Scholar
  50. 50.
    Gamow G., Iwanenko D., Zur Wellentheorie der Materie, Z. Phys. 39, 865 (1926)ADSCrossRefGoogle Scholar
  51. 51.
    Gamow G., Teller E., The rate of selective thermonuclear reactions, Phys. Rev. 53, 608 (1938)ADSCrossRefGoogle Scholar
  52. 52.
    Goldschmidt V.M., Geochemische vertielungsgesetze der elemente. IX. Die mengenverhaltnisse der elemente under atom-arten, Skr. Nor. Vidensk. Akad. Oslo I. Mat.-Naturv. Kl. 4(1937)Google Scholar
  53. 53.
    Gurney R.W., Condon E.U., Wave mechanics and radioactive disintegration, Nature 122, 439 (1928)zbMATHADSCrossRefGoogle Scholar
  54. 54.
    Gurney R.W., Condon E.U., Quantum mechanics and radioactive disintegration, Phys. Rev. 33, 127 (1929)ADSCrossRefGoogle Scholar
  55. 55.
    Hall K., The Schooling of Lev Landau: The European Context of Postrevolutionary Soviet Theoretical Physics, Osiris 23, 230 (2008)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Harkins W.D., Hydrogen-helium atomic evolution hypothesis, J. Amer. Chem. Soc. 39, 856 (1917)CrossRefGoogle Scholar
  57. 57.
    Harkins W.D., Isotopes: their number and classification, Nature 107, 202 (1921)ADSCrossRefGoogle Scholar
  58. 58.
    Harkins W.D., Wilson E.D., Energy-changes in atomic formation, Phil. Mag. 30, 723 (1915)Google Scholar
  59. 59.
    Harkins W.D., Wilson E.D., Changes of mass and weight in complex atoms, J. Am. Chem. Soc. 37, 1396 (1915)CrossRefGoogle Scholar
  60. 60.
    Hayashi C., Proton-neutron concentration ratio in the expanding universe at the stages preceding the formation of the elements, Prog. Theor. Phys. 5, 224 (1950)ADSCrossRefGoogle Scholar
  61. 61.
    Holloway M.S., Moore B.L., The disintegration of N14 and N15 by deuterons, Phys. Rev. 58, 847 (1940)ADSCrossRefGoogle Scholar
  62. 62.
    Hoyle F., The Synthesis of the Elements from Hydrogen, MNRAS 106, 343 (1946)ADSGoogle Scholar
  63. 63.
    Hoyle F., Astrophys. 51, 121 (1954)Google Scholar
  64. 64.
    Hoyle F., The universe: Past and present reflections, Ann. Rev. Astron. Astrophys. 20, 1 (1982)ADSCrossRefGoogle Scholar
  65. 65.
    Hoyle F., Lyttleton R.A., The evolution of the stars, Proc. Cam. Phil. Soc. 35, 592 (1939)zbMATHCrossRefGoogle Scholar
  66. 66.
    Hoyle F., Tayler R., The mystery of the Cosmic helium Abundance, Nature 203, 1018 (1964)Google Scholar
  67. 67.
    Iwanowska W., Bull. Astron. Obs. U. Torun 9, 25 (1950)Google Scholar
  68. 68.
    Iwanowska W., Bull. Astron. Obs. U. Torun 11 (1953)Google Scholar
  69. 69.
    Jeans J.H., Astronomy and Cosmogony (Cambridge Univ. Press, 1929), pp. 345 − 347Google Scholar
  70. 70.
    Joly J., Nature 68, 496 (1923)Google Scholar
  71. 71.
    Kleiber I.A., On the chemical composition of celestial bodies, J. Russ Fis-Khim. Osbhch 17, 147 (1885)Google Scholar
  72. 72.
    Klein O., Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys. 37, 895 (1926)ADSCrossRefGoogle Scholar
  73. 73.
    Klem O., Ark. Mat. Astron. Fys. B 33 (1947)Google Scholar
  74. 74.
    Kolb E.W., Turner M.S., The Early Universe (Addison Wesley, 1990), Sect. 4.3Google Scholar
  75. 75.
    Kuchowicz B., Nuclear Astrophysics (Gordon & Breach, New York, 1967)Google Scholar
  76. 76.
    Landau L., Origin of stellar energy, Nature 141, 333 (1938)ADSCrossRefGoogle Scholar
  77. 77.
    Lindley D., Degrees Kelvin(Joseph Henry Press, 2004)Google Scholar
  78. 78.
    Mandel H., Über die Bewegungsgleichungen des Relativitätsprinzips, Z. Phys. A 39, 40 (1920) ; Zur Herleitung der Feldgleichungen in der allgemeinen Relativitätstheorie (Erste Mitteilung), Z. Phys. A 39, 136 (1920)Google Scholar
  79. 79.
    Malm R., Buechner W.W., Alpha-Particle Groups from the N14 (d, α) C12 and N15 (d,α) C13 Reactions, Phys. Rev. 81, 519 (1951)ADSCrossRefGoogle Scholar
  80. 80.
    Mayer M.G., Teller E., On the origin of elements, Phys. Rev. 76, 1226 (1949)zbMATHADSCrossRefGoogle Scholar
  81. 81.
    McCrea W.H., Model stellar atmospheres, MNRAS 91, 0836 (1931)ADSGoogle Scholar
  82. 82.
    Mendeleev D., Chem. News. 60, 15 (1899)Google Scholar
  83. 83.
    Merrill P.W., Spectroscopic observations of stars of class S, Astrophys. J. 116, 21 (1952)ADSCrossRefGoogle Scholar
  84. 84.
    Merrill P.W., Technetium in the Stars, Science 115, 484 (1952)Google Scholar
  85. 85.
    Murgai M., Ind. J. Phys. 26, 313 (1952)Google Scholar
  86. 86.
    Newcomb S., Sidelights on astronomy: essays and addresses(Harper and Brothers, NY, 1906)Google Scholar
  87. 87.
    Nicolson J.W., The Constitution of Nebulae, MNRAS 74, 486 (1917)ADSGoogle Scholar
  88. 88.
    Noddack I., Noddack W., Die Häufigkeit der Chemischen Elemente, Naturewiss. 18, 757 (1930)ADSCrossRefGoogle Scholar
  89. 89.
    O’Connell D.J.K., Ric. Astr. Speccola Vaticana(Stellar Populations, 1958), Vol. 5Google Scholar
  90. 90.
    Opik E., Stellar structure, source of energy, and evolution, Acta et Commentationes Universitatis (Dorpatensia) 33, 1 (1938)Google Scholar
  91. 91.
    Opik E., Composite stellar models, Proc. Obs. Astron. U. Tartu 30 (1939)Google Scholar
  92. 92.
    Opik E., Stellar models with Variable Composition, Proc. R. Irish. Acad. A 54, 49 (1951)Google Scholar
  93. 93.
    Opik E.J., About dogma in science, and other recollections of an astronomer, Ann. Rev. Astron. Astrophys. 15, 1 (1977)ADSCrossRefGoogle Scholar
  94. 94.
    Osterbrock D.E., J. Hist. Astron. 29, 345 (1998)ADSGoogle Scholar
  95. 95.
    Pagel B.J.E., Nucleosynthesis and chemical evolution of galaxies(Cambridge U. Press, 1977)Google Scholar
  96. 96.
    Payne C., Stellar atmospheres (Heffer & Sons, 1925)Google Scholar
  97. 97.
    Peebles P.J.E., Primeval helium abundance and the primeval fireball, Phys. Rev. Lett. 16, 410 (1966)ADSCrossRefGoogle Scholar
  98. 98.
    Peebles P.J.E.P., Primordial helium abundance and primordial fireball. II, Astrophys. J. 146, 542 (1966)ADSCrossRefGoogle Scholar
  99. 99.
    Perrin J., Matière et Lumière, Ann. Phys. (Paris) 11, 89 (1919)Google Scholar
  100. 100.
    Perrin J., Rev. Mois 21, 113 (1920)Google Scholar
  101. 101.
    Perrin J., L’Origine de la Chaleur Solaire, Scientia (Milan) 30, 355 (1921)Google Scholar
  102. 102.
    Pokrowski G., Uber die Synthese von Elementen, Z. Phys. 9, 865 (1929)Google Scholar
  103. 103.
    Pokrowski G.I., Versuch der andwnnedung einiger thermodynamischer gesetzmassigkeiten zur beschribung von erscheinungen in atomkernen, Phys. Z. 32, 374 (1931)zbMATHGoogle Scholar
  104. 104.
    Prout Wm., Published anonymously in Thomsen, Ann. Phil. 11, 321 (1815)Google Scholar
  105. 105.
    Prout Wm., Published anonymously in Thomsen, Ann. Phil. 12, 111 (1816)Google Scholar
  106. 106.
    Roman N.G., The Spectra of the Bright Stars of Types F5-K5, Astrophys. J. 116, 122 (1952)ADSCrossRefGoogle Scholar
  107. 107.
    Roman N.G., A Catalogue of High-Velocity Stars, Astrophys. J. Suppl. 2, 195 (1955)ADSCrossRefGoogle Scholar
  108. 108.
    Russell H.N., Publ. Astron. Soc. Pacific 31, 205 (1919)ADSCrossRefGoogle Scholar
  109. 109.
    Russell H.N., On the composition of the Sun’s Atmosphere, Astrophys. J. 70, 11 (1929)ADSCrossRefGoogle Scholar
  110. 110.
    Russell H.N., Dugan R.S., Stewart J.Q., Astronomy(Ginn & Co., Boston, 1926)Google Scholar
  111. 111.
    Rutherford E., The amount of emanation and helium from radium, Nature 68, 366 (1903)ADSCrossRefGoogle Scholar
  112. 112.
    Rutherford E., Origin of actinium and age of the earth, Nature 123, 313 (1929)zbMATHADSCrossRefGoogle Scholar
  113. 113.
    Salpeter E.E., Nuclear reactions in stars without hydrogen, Astrophys. J. 115, 326 (1952)ADSCrossRefGoogle Scholar
  114. 114.
    Salpeter E.E., A generalist looks back, Ann. Rev. Astron. Astrophys. 40, 1 (2002)ADSCrossRefGoogle Scholar
  115. 115.
    Salpeter E.E., Nuclear Astrophysics Before 1957, Publ. Astron. Soc. Austr. 25, 1 (2008)ADSCrossRefGoogle Scholar
  116. 116.
    Scerri E.R., The Periodic Table (Oxford Univ. Press, 2007)Google Scholar
  117. 117.
    Schoenberg M., Chandrasekhar S., On the Evolution of the Main-Sequence Stars, Astrophys. J. 96, 161 (1949)ADSCrossRefGoogle Scholar
  118. 118.
    Schwarzschild M., Schwarzschild B., A spectroscopy comparison between high-velocity and low-velocity F-dwarfs, Astrophys. J. 112, 248 (1950)ADSCrossRefGoogle Scholar
  119. 119.
    Schwarzschild M., Spitzer L., Wildt R., On the difference in chemical composition between high-and low-velocity stars, Astrophys. J. 114, 398 (1951)ADSCrossRefGoogle Scholar
  120. 120.
    Steensholt G., The transmutation of elements in stars, Z. Astrophys. 5, 140 (1932)zbMATHADSGoogle Scholar
  121. 121.
    Sterne T.E., The equilibrium of transmutations in stars in which transmutations are an important source of energy, MNRAS 93, 770 (1933)zbMATHADSGoogle Scholar
  122. 122.
    Sterne T.E., A note on the liberation of energy by transmutation of nuclei in the stars, MNRAS 93, 767 (1933)zbMATHADSGoogle Scholar
  123. 123.
    Sterne T.E., The equilibrium theory of the abundance of the elements: A statistical investigation of assemblies in equilibrium in which transmutations occur, MNRAS 93, 736 (1933)zbMATHADSGoogle Scholar
  124. 124.
    Stone S.B., The Origin of the Chemical Elements, J. Phys. Chem. 34, 821 (1930)CrossRefGoogle Scholar
  125. 125.
    Strömgren B., The opacity of stellar matter and the hydrogen content of star, Z. Astrophys. 4, 118 (1932)zbMATHADSGoogle Scholar
  126. 126.
    Suess H.E., Urey H.C., Abundances of the elements, Rev. Mod. Phys. 28, 53 (1956)ADSCrossRefGoogle Scholar
  127. 127.
    Tinsley B.M., Evolution of stars and gas in galaxies, Astrophys J. 155, 547 (1968)ADSCrossRefGoogle Scholar
  128. 128.
    Tolman R.C., J. Amer. Chem. Soc. 44, 1902 (1922) CrossRefGoogle Scholar
  129. 129.
    Tolman R.C., Relativity, Thermodynamics, and Cosmology(Oxford Univ. Press, 1934)Google Scholar
  130. 130.
    Trimble V., The origin and abundances of the chemical elements, Rev. Mod. Phys. 47, 877 (1975)ADSCrossRefGoogle Scholar
  131. 131.
    Trimble V., The origin and abundances of the chemical elements revisited, Astron. Astrophys. Rev. 3, 1 (1991)ADSCrossRefGoogle Scholar
  132. 132.
    Trimble V., Cosmic Abundances, edited by Holt S.S., Sonneborn G., Astron. Society Pac. Conf. Ser. 99, 3 (1996)Google Scholar
  133. 133.
    Trimble V., Rev. Mod. Astron. (Ed. S. Roser) 109, 21 (2009)Google Scholar
  134. 134.
    Unsöld A., Über die Struktur der Fraunhofersehen Linien und die quantitative Spektralanalyse der Sonnenatmosphäre, Z. Phys. 46, 765 (1928)ADSCrossRefGoogle Scholar
  135. 135.
    Unsöld A., Physik der Sternatmospharen, 1st edn. (Springer Verlag, Berlin, 1938), Sect. 36 Google Scholar
  136. 136.
    Urey H.C., A name and symbol for H2, J. Chem. Phys. 1, 512 (1933)ADSCrossRefGoogle Scholar
  137. 137.
    Urey H.C., Bradley C.A., On the Relative Abundances of Isotopes, Phys. Rev. 38, 718 (1931)ADSCrossRefGoogle Scholar
  138. 138.
    van Albada G.H., Bull. Astron. Inst. Netherlands 10, 161 (1946)ADSGoogle Scholar
  139. 139.
    Vernon H.M., On the genesis of the elements, Chem. News 51, 51 (1890)Google Scholar
  140. 140.
    von Weizäcker C.F., Über Elementumwandlungen in innern der sterne I, Phys. Zs. 38, 176 (1937)Google Scholar
  141. 141.
    von Weizäcker C.F., Über Elementumwandlungen in innern der sterne, Phys. Zs. 39, 633 (1938)Google Scholar
  142. 142.
    Wagoner R.W., Fowler W.A., Hoyle F., On synthesis of elements at very high temperatures, Astrophys. J. 148, 3 (1967)ADSCrossRefGoogle Scholar
  143. 143.
    Walke H.J., Radioactivity and nuclear synthesis, Phil. Mag. 18, 33, 341, 795 (1934)Google Scholar
  144. 144.
    Wheeler J.A., The Alpha-particle model and the properties of the nucleus Be8, Phys. Rev. 59, 27 (1941)zbMATHADSCrossRefGoogle Scholar
  145. 145.
    Wildt R., Electron affinity in astrophysics, Astrophys. J. 89, 295 (1939)ADSCrossRefGoogle Scholar
  146. 146.
    Wilson A.E., The transmutation of elements in stars, MNRAS 91, 283 (1930)ADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of CaliforniaIrvineUSA

Personalised recommendations