The European Physical Journal H

, Volume 35, Issue 1, pp 53–88 | Cite as

Jorge A. Swieca’s contributions to quantum field theory in the 60s and 70s and their relevance in present research

  • B. SchroerEmail author


After revisiting some high points of particle physics and QFT of the two decades from 1960 to 1980, I comment on the work by Jorge André Swieca. I explain how it fits into the quantum field theory during these two decades and draw attention to its relevance to the ongoing particle physics research. A particular aim of this article is to direct the readers mindfulness to the relevance of what at the time of Swieca was called “the Schwinger Higgs screening mechanism” which, together with recent ideas which generalize the concept of gauge theories, has all the ingredients to revolutionize the issue of gauge theories and the standard model.


Gauge Theory Particle Physic Vacuum Polarization Spontaneous Symmetry Breaking Particle Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.J. Jost, TCP-Invarianz der Streumatrix und interpolierende Felder, Helv. Phys. Acta 36, 77 (1963)zbMATHGoogle Scholar
  2. 2.
    G.F. Chew, S-Matrix Theory of Strong Interactions(W.A. Benjamin Inc., New York, 1961)Google Scholar
  3. 3.
    R. Haag, Local Quantum Physics (Springer, 1996)Google Scholar
  4. 4.
    B. Schroer, A critical look at 50 years particle theory from the perspective of the crossing property, e-print arXiv:0905.4006Google Scholar
  5. 5.
    B. Schroer, Localization and the interface between quantum mechanics, quantum field theory and quantum gravity I (The two antagonistic localizations and their asymptotic compatibility), e-print arXiv:0912.2874Google Scholar
  6. 6.
    B. Schroer, Localization and the interface between quantum mechanics, quantum field theory and quantum gravity II (The search of the interface between QFT and QG), e-printarXiv:0912.2886Google Scholar
  7. 7.
    W. Heisenberg, Der mathematische Rahmen der quantentheorie der Wellenfelder, Z. Naturforsch. 1, 608 (1946), and references to prior work therein MathSciNetADSGoogle Scholar
  8. 8.
    W.H. Furry, J.R. Oppenheimer, On the theory of the electron and positive, Phys. Rev. 45, 245 (1934)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    P. Di Vecchia, The birth of string theory, Lect. Notes Phys. 737, 59 (2008)CrossRefADSGoogle Scholar
  10. 10.
    D. Kastler, D.W. Robinson, J.A. Swieca, Conserved Currents and Associated Symmetries; Goldstone’s Theorem, Commun. Math. Phys. 2, 108 (1966)zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    B. Schroer, BMS symmetry, holography on null-surfaces and area proportionality of “light-slice” entropy, e-print arXiv:0905.4435Google Scholar
  12. 12.
    R.F. Streater, A.S. Wightman, PCT, Spin and Statistics and all that(Benjamin Inc., New York, 1964)Google Scholar
  13. 13.
    J. Mund, in preparationGoogle Scholar
  14. 14.
    R. Haag, J.A. Swieca, When does a quantum field theory describe particles? Commun. Math. Phys. 1, 308 (1965)zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    H. Epstein, V. Glaser, Role of locality in perturbation theory, Ann. Inst. Henri Poincaré A XIX, 211 (1973) MathSciNetGoogle Scholar
  16. 16.
    J. Mund, B. Schroer, J. Yngvason, String-localized quantum fields and modular localization, Commun. Math. Phys. 268, 621 (2006) zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    D. Buchholz, E.H. Wichmann, Causal Independence and the energy-level density of states in local quantum field theory, Commun. Math. Phys. 106, 321 (1986) zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    D. Buchholz, P. Junglas, On the existence of equilibrium states in local quantum field theory, Commun. Math. Phys. 121, 255 (1989) zbMATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    W. Dybalski, A sharpened nuclearity condition and the uniqueness of the vacuum in QFT, e-print arXiv:0706.4049 Google Scholar
  20. 20.
    G. Lechner, Construction of quantum field theories with factorizing S-matrices, Commun. Math. Phys. 277, 821 (2008) zbMATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    J. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2, 231 (1997)MathSciNetADSGoogle Scholar
  22. 22.
    K.-H. Rehren, Local quantum observables in the AdS-CFT correspondence, Phys. Lett. B 493, 383 (2000) CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    M. Dütsch, K.-H. Rehren, Generalized free fields and the AdS-CFT correspondence, Annales Henri Poincaré 4, 613 (2003), and references to previous work zbMATHCrossRefGoogle Scholar
  24. 24.
    J. Goldstone, Field theories with superconductor solutions, Nuovo Cim. 19, 154 (1961)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    J. Schwinger, Gauge invariance and mass 2, Phys. Rev. 128, 2425 (1962) zbMATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    The idea of a screened massive phase of QED appeared first, in Theoretical Physics, Trieste Lectures, 1962, edited by J. Schwinger (IAEA, Vienna, 1963), p. 89Google Scholar
  27. 27.
    N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or 2-Dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17, 1133 (1966) CrossRefADSGoogle Scholar
  28. 28.
    P.W. Higgs, Broken symmetries, massless particles and Gauge fields, Phys. Lett. 12, 132 (1964)ADSGoogle Scholar
  29. 29.
    R. Brout, F. Englert, Broken Symmetry + Mass of Gauge vector Mesons, Phys. Rev. Lett. 13, 321 (1964)CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    P.W. Anderson, Plasmons, Gauge invariance, and mass, Phys. Rev. 130, 439 (1963) zbMATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    H. Ezawa, J.A. Swieca, Spontaneous breakdown of symmetries and zero-mass states, Commun. Math. Phys. 5, 330 (1967)zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    J.A. Swieca, Conserved currents renormalization and zero-mass states, Nuovo Cim. A 52, 242 (1967)CrossRefADSGoogle Scholar
  33. 33.
    J.A. Swieca, Comoun. Math. Phys. 4, 1 (1967), in Cargèse Lectures in Physics, edited by D. Kastler (Gordon and Breach, New York, 1970)Google Scholar
  34. 34.
    J.A. Swieca, Charge screening and mass-spectrum, Phys. Rev. D 13, 312 (1976)CrossRefADSGoogle Scholar
  35. 35.
    T.W. Kibble, International Conference on Elementary Particles, Oxford Conference Report (1965)Google Scholar
  36. 36.
    D.C. Brydges, P. Federbush, Debye-screening , Commun. Math. Phys. 73, 197 (1980)CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    B. Schroer, Pascual Jordan’s legacy and the ongoing research in quantum field theory, in preparationGoogle Scholar
  38. 38.
    J.E. Lowenstein, J.A. Swieca, Quantum electrodynamics in 2 DIMensions, Ann. Phys. (N.Y.) 68, 172 (1971)CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    O. Steinmann, A New Look at the Higgs-Kibble Model, e-print arXiv:0804.2989Google Scholar
  40. 40.
    V. Kurak, B. Schroer, J.A. Swieca, Comments on confinement criteria, Nucl. Phys. B 134, 61 (1978)CrossRefADSGoogle Scholar
  41. 41.
    L.V. Belvedere, J.A. Swieca, K.D. Rothe, B. Schroer, Generalized 2-dimensional Abelian Gauge-Theories and confinement, Nucl. Phys. B 153, 112 (1979) CrossRefMathSciNetADSGoogle Scholar
  42. 42.
    D. Buchholz, K. Fredenhagen, Charge screening and mass-spectrum in Abelian Gauge-Theories, Nucl. Phys. B 154, 226 (1979) CrossRefADSGoogle Scholar
  43. 43.
    D. Buchholz, Gauss law and the infraparticle problem, Phys. Lett. B 174, 331 (1986) CrossRefMathSciNetADSGoogle Scholar
  44. 44.
    J.H. Lowenstein, B. Schroer, Gauge invariance and ward identities in a massive-vector-Meson model, Phys. Rev. D 6, 1553 (1972)CrossRefADSGoogle Scholar
  45. 45.
    D. Buchholz, K. Fredenhagen, Locality and the structure of particle states, Comm. Math. Phys. 84, 1 (1982)zbMATHCrossRefMathSciNetADSGoogle Scholar
  46. 46.
    B. Schroer, String Theory deconstructed, in preparationGoogle Scholar
  47. 47.
    B. Schroer, A note on Infraparticles and Unparticles, e-print arXiv:0804.3563Google Scholar
  48. 48.
    F. Bloch, A. Nordsiek, Note on the Radiation Field of the Electron, Phys. Rev. 52, (1934) 54 CrossRefADSGoogle Scholar
  49. 49.
    D. Yenni, S. Frautschi, H. Suura, The infrared divergence phenomena and high-energy processes, Ann. Phys. 13, 379 (1961)CrossRefADSGoogle Scholar
  50. 50.
    J.D. Dollard, Asymptotic convergence and the Coulomb interaction, J. Math. Phys. 5, 729 (1964)CrossRefMathSciNetADSGoogle Scholar
  51. 51.
    B. Schroer, Modular wedge localization and the d=1+1 formfactor program, Ann. Phys. 275, 190 (1999) zbMATHCrossRefMathSciNetADSGoogle Scholar
  52. 52.
    R. Brunetti, D. Guido, R. Longo, Modular localization and Wigner particles, Rev. Math. Phys. 14, 759 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    R.F. Dashen, B. Hasslacher, A. Neveu, Nonperturbative methods and extended-Hadron models in field-theory. 3. 4-Dimensional non-Abelian models, Phys. Rev. D 10, 4138 (1974) CrossRefADSGoogle Scholar
  54. 54.
    B. Schroer, T.T. Truong, P. Weisz, Towards an explicit construction of Sine-gordon field-theory, Phys. Lett. B 63, 422 (1976)CrossRefADSGoogle Scholar
  55. 55.
    M. Karowski, H.J. Thun, T.T. Truong, P. Weisz, Uniqueness of a purely elastic S-matrix in (1+1) dimensions, Phys. Lett. B 67, (1977) 321 CrossRefADSGoogle Scholar
  56. 56.
    M. Karowski, P. Weisz, Exact form-factors in (1+1)-dimensional field theoretic models with soliton behavior, Nucl. Phys. B 139, (1978) 455 CrossRefMathSciNetADSGoogle Scholar
  57. 57.
    M. Karowski, V. Kurak, B. Schroer, Confinement in 2-dimensional models with factorization, Phys. Lett. B 81, 200 (1979)CrossRefADSGoogle Scholar
  58. 58.
    H. Babujian, M. Karowski, Exact form factors for the scaling Z(N)-Ising and the affine A(N-1)-Toda quantum field theories, Phys. Lett. B 575, 144 (2003) zbMATHCrossRefMathSciNetADSGoogle Scholar
  59. 59.
    V. Kurak, J.A. Swieca, Anti-particles as bound-states of particles in the factorized S-matrix framework, Phys. Lett. B 82, 289 (1979)CrossRefADSGoogle Scholar
  60. 60.
    S. Coleman, There are no Goldstone bosons in 2 dimensions, Commun. Math. Phys. 31, 259 (1973)zbMATHCrossRefADSGoogle Scholar
  61. 61.
    R. Koberle, V. Kurak, J.A. Swieca, Scattering theory and 1-n expansion in the chiral Gross-Neveu model, Phys. Rev. D 20, 897 (1979)CrossRefADSGoogle Scholar
  62. 62.
    E. Witten, Chiral symmetry, 1-N expansion and Su(N) Thirring model, Nucl. Phys. B 145, 110 (1978) CrossRefADSGoogle Scholar
  63. 63.
    E. Abdalla, B. Berg, P. Weisz, More about the S-matrix of the chiral Su(N) Thirring model, Nucl. Phys. B 157, 387 (1979) CrossRefADSGoogle Scholar
  64. 64.
    H. Babujian, A. Foerster, M. Karowski, Exact form factors of the SU(N) Gross–Neveu model and 1/N expansion, Nucl. Phys. B 825, 396 (2010) CrossRefMathSciNetADSGoogle Scholar
  65. 65.
    B. Schroer, J.A. Swieca, Spin and statistics of quantum kinks, Nucl. Phys. B 121, 505 (1977) CrossRefADSGoogle Scholar
  66. 66.
    J. Mund, Modular localization of massive particles with “any” spin in d=2+1, J. Math. Phys. 44, 2037 (2003) zbMATHCrossRefMathSciNetADSGoogle Scholar
  67. 67.
    G.C. Marques, J.A. Swieca, Complex masses and acausal propagation in field-theory, Nucl. Phys. B 43, 205 (1972)CrossRefADSGoogle Scholar
  68. 68.
    B. Schroer, An anthology of non-local QFT and QFT on non-commutative spacetime, Ann. Phys. 319, 92 (2005)zbMATHCrossRefMathSciNetADSGoogle Scholar
  69. 69.
    F. Coester, W.N. Polyzou, Relativistic quantum-mechanics of particles with direct interactions, Phys. Rev. D 26, 1348 (1982), and references therein CrossRefMathSciNetADSGoogle Scholar
  70. 70.
    M. Hortacsu, B. Schroer, R. Seiler, Conformal symmetry and reverberations, Phys. Rev. D 5, 2519 (1972)CrossRefADSGoogle Scholar
  71. 71.
    J.A. Swieca, A.H. Volkel, Remarks on conformal invariance, Commun. Math. Phys. 29, 319 (1973)CrossRefMathSciNetADSGoogle Scholar
  72. 72.
    P.D. Hislop, R. Longo, Modular structure of the local Algebras associated with the free massless scalar field-theory, Commun. Math. Phys. 84, 71 (1982)zbMATHCrossRefMathSciNetADSGoogle Scholar
  73. 73.
    B. Schroer, J.A. Swieca, Conformal transformations for quantized fields, Phys. Rev. D 10, 480 (1974)CrossRefMathSciNetADSGoogle Scholar
  74. 74.
    B. Schroer, J.A. Swieca, A.H. Völkel, Global operator expansions in conformally invariant relativistic quantum field theory, Phys. Rev. D 11, 1509 (1972) CrossRefADSGoogle Scholar
  75. 75.
    B. Bakalov, N.M. Nikolov, K.-H. Rehren, I. Todorov, Unitary positive-energy representations of scalar bilocal quantum fields, Commun. Math. Phys. 271, 223 (2007) zbMATHCrossRefMathSciNetADSGoogle Scholar
  76. 76.
    B. Bakalov, N.M. Nikolov, K.-H. Rehren, I. Todorov, Infinite Dimensional Lie Algebras in 4D Conformal Quantum Field Theory, J. Phys. A: Math. Theor. 41, 194002 (2008) CrossRefMathSciNetADSGoogle Scholar
  77. 77.
    K.-H. Rehren, B. Schroer, Einstein causality and Artin Braids, Nucl. Phys. B 312, 715 (1989) CrossRefMathSciNetADSGoogle Scholar
  78. 78.
    H.J. Borchers, D. Buchholz, B. Schroer, Polarization-free generators and the S-matrix, Commun. Math. Phys. 219, 125 (2001) zbMATHCrossRefMathSciNetADSGoogle Scholar
  79. 79.
    R. Koberle, J.A. Swieca, Factorizable Z(N) models, Phys. Lett. 86, 209 (1979)Google Scholar
  80. 80.
    J.A. Swieca, Solitons and confinement, Fortschr. Phys. 25, 303 (1977)CrossRefGoogle Scholar
  81. 81.
    E. Marino, J.A. Swieca, Order, disorder and generalized statistics, Nucl. Phys. B 170, 175 (1980) CrossRefMathSciNetADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  1. 1.CBPFRio de JaneiroBrazil

Personalised recommendations