Abstract
We consider the dynamic structure factor (DSF) of quasi-spherical vesicles and present a generalization of an expression that was originally formulated by Zilman and Granek (ZG) for scattering from isotropically oriented quasi-flat membrane plaquettes. The expression is obtained in the form of a multi-dimensional integral over the undulating membrane surface. The new expression reduces to the original stretched exponential form in the limit of sufficiently large vesicles, i.e., in the micron range or larger. For much smaller unilamellar vesicles, deviations from the asymptotic, stretched exponential equation are noticeable even if one assumes that the Seifert-Langer leaflet density mode is completely relaxed and membrane viscosity is neglected. To avoid the need for an exhaustive numerical integration while fitting to neutron spin echo (NSE) data, we provide a useful approximation for polydisperse systems that tests well against the numerical integration of the complete expression. To validate the new expression, we performed NSE experiments on variable-size vesicles made of a POPC/POPS lipid mixture and demonstrate an advantage over the original stretched exponential form or other manipulations of the original ZG expression that have been deployed over the years to fit the NSE data. In particular, values of the membrane bending rigidity extracted from the NSE data using the new approximations were insensitive to the vesicle radii and scattering wavenumber and compared very well with expected values of the effective bending modulus (\(\tilde{\kappa }\)) calculated from results in the literature. Moreover, the generalized scattering theory presented here for an undulating quasi-spherical shell can be easily extended to other models for the membrane undulation dynamics beyond the Helfrich Hamiltonian and thereby provides the foundation for the study of the nanoscale dynamics in more complex and biologically relevant model membrane systems.
Graphical abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Raw data of the experiment are available at doi.ill.fr/10.5291/ILL-DATA.DIR-277.
Notes
The term vesicle “static structure factor” used here is equivalent to the term vesicle “form factor” commonly used in the small angle scattering community.
References
É. Freyssingeas, D. Roux, F. Nallet, Quasi-elastic light scattering study of highly swollen lamellar and “sponge’’ phases. J. Phys. II 7(6), 913–929 (1997)
R. Hirn, T.M. Bayerl, J.O. Rädler, E. Sackmann, Collective membrane motions of high and low amplitude, studied by dynamic light scattering and micro-interferometry. Faraday Discuss. 111, 17–30 (1999). https://doi.org/10.1039/A807883A
P. Falus, M. Borthwick, S. Mochrie, Fluctuation dynamics of block copolymer vesicles. Phys. Rev. Lett. 94(1), 016105 (2005)
P. Falus, M. Borthwick, S. Narayanan, A. Sandy, S. Mochrie, Crossover from stretched to compressed exponential relaxations in a polymer-based sponge phase. Phys. Rev. Lett. 97(6), 066102 (2006)
S. Gupta, R. Ashkar, The dynamic face of lipid membranes. Soft Matter 17(29), 6910–6928 (2021)
V. Sharma, E. Mamontov, Multiscale lipid membrane dynamics as revealed by neutron spectroscopy. Prog. Lipid Res. 101179 (2022)
M. Nagao, H. Seto, Neutron scattering studies on dynamics of lipid membranes. Biophys. Rev. 4(2) (2023)
M.C. Watson, Y. Peng, Y. Zheng, F.L.H. Brown, The intermediate scattering function for lipid bilayer membranes: from nanometers to microns. J. Chem. Phys. 135(19), 194701 (2011). https://doi.org/10.1063/1.3657857
M.C. Watson, E.S. Penev, P.M. Welch, F.L.H. Brown, Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers. J. Chem. Phys. 135(24), 244701 (2011). https://doi.org/10.1063/1.3660673
S.T. Milner, S.A. Safran, Dynamical fluctuations of droplet microemulsions and vesicles. Phys. Rev. A 36, 4371–4379 (1987). https://doi.org/10.1103/PhysRevA.36.4371
A.G. Zilman, R. Granek, Undulations and dynamic structure factor of membranes. Phys. Rev. Lett. 77(23), 4788–4791 (1996). https://doi.org/10.1103/PhysRevLett.77.4788
A.G. Zilman, R. Granek, Membrane dynamics and structure factor. Chem. Phys. 284(1), 195–204 (2002). https://doi.org/10.1016/S0301-0104(02)00548-7
S. Lovesey, P. Schofield, Inelastic coherent neutron scattering by small particles. J. Phys. C Solid State Phys. 9(15), 2843 (1976)
M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, vol. 73 (Oxford University Press, Oxford, 1988)
P.-G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, London, 1979)
M.C. Watson, F.H. Brown, Interpreting membrane scattering experiments at the mesoscale: the contribution of dissipation within the bilayer. Biophys. J . 98(6), 9–11 (2010). https://doi.org/10.1016/j.bpj.2009.11.026
I. Hoffmann, Background subtraction and dada analysis in neutron spin echo spectroscopy. Front. Phys. (2021). https://doi.org/10.3389/fphy.2020.620082
E.G. Kelley, E.E. Blick, V.M. Prabhu, P.D. Butler, M. Nagao, Interactions, diffusion, and membrane fluctuations in concentrated unilamellar lipid vesicle solutions. Front. Phys. 10, 288 (2022)
M. Monkenbusch, O. Holderer, H. Frielinghaus, D. Byelov, J. Allgaier, D. Richter, Bending moduli of microemulsions; comparison of results from small angle neutron scattering and neutron spin-echo spectroscopy. J. Phys. Condens. Matter 17(31), 2903–2909 (2005). https://doi.org/10.1088/0953-8984/17/31/017
M. Ohl, M. Monkenbusch, N. Arend, T. Kozielewski, G. Vehres, C. Tiemann, M. Butzek, H. Soltner, U. Giesen, R. Achten, H. Stelzer, B. Lindenau, A. Budwig, H. Kleines, M. Drochner, P. Kaemmerling, M. Wagener, R. Möller, E.B. Iverson, M. Sharp, D. Richter, The spin-echo spectrometer at the spallation neutron source (sns). Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 696, 85–99 (2012). https://doi.org/10.1016/j.nima.2012.08.059
O. Holderer, O. Ivanova, J-nse: neutron spin echo spectrometer. J. Large-scale Res. Facil. JLSRF 1, 11–11 (2015)
B. Farago, P. Falus, I. Hoffmann, M. Gradzielski, F. Thomas, C. Gomez, The in15 upgrade. Neutron News 26(3), 15–17 (2015). https://doi.org/10.1080/10448632.2015.1057052
W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693–703 (1973)
U. Seifert, K. Berndl, R. Lipowsky, Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models. Phys. Rev. A 44(2), 1182 (1991)
U. Seifert, S.A. Langer, Viscous modes of fluid bilayer-membranes. Europhys. Lett. 23(1), 71–76 (1993). https://doi.org/10.1209/0295-5075/23/1/012
U. Seifert, S.A. Langer, Hydrodynamics of membranes: the bilayer aspect and adhesion. Biophys. Chem. 49(1), 13–22 (1994). https://doi.org/10.1016/0301-4622(93)E0077-I
L.R. Arriaga, R. Rodríguez-García, B. López-Montero, T. Farago, F. Monroy. Hellweg, Dissipative curvature fluctuations in bilayer vesicles: coexistence of pure-bending and hybrid curvature-compression modes. Eur. Phys. J. E 31(1), 105–113 (2010). https://doi.org/10.1140/epje/i2010-10551-1
H.A. Faizi, R. Granek, P.M. Vlahovska, Membrane viscosity signature in thermal undulations of curved fluid bilayers (2022)
A.C. Woodka, P.D. Butler, L. Porcar, B. Farago, M. Nagao, Lipid bilayers and membrane dynamics: insight into thickness fluctuations. Phys. Rev. Lett. 109(5), 058102 (2012)
M. Nagao, E.G. Kelley, R. Ashkar, R. Bradbury, P.D. Butler, Probing elastic and viscous properties of phospholipid bilayers using neutron spin echo spectroscopy. J. Phys. Chem. Lett. 8(19), 4679–4684 (2017). https://doi.org/10.1021/acs.jpclett.7b01830
R.J. Bingham, S.W. Smye, P.D. Olmsted, Dynamics of an asymmetric bilayer lipid membrane in a viscous solvent. EPL 111(1), 18004 (2015). https://doi.org/10.1209/0295-5075/111/18004
R. Granek, Comment on “dynamics of phospholipid membranes beyond thermal undulations’’. J. Phys. Chem. B 123(26), 5665–5666 (2019). https://doi.org/10.1021/acs.jpcb.9b03049
L. Moleiro, M. Mell, R. Bocanegra, I. López-Montero, P. Fouquet, T. Hellweg, J. Carrascosa, F. Monroy, Permeability modes in fluctuating lipid membranes with DNA-translocating pores. Adv. Coll. Interface. Sci. 247, 543–554 (2017)
R. Granek, Membrane surrounded by viscoelastic continuous media: anomalous diffusion and linear response to force. Soft Matter 7(11), 5281–5289 (2011)
R. Granek, H. Diamant, Membrane undulations in a structured fluid: universal dynamics at intermediate length and time scales. Eur. Phys. J. E 41, 1–10 (2018)
M. Schneider, J. Jenkins, W. Webb, Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles. J. Phys. 45(9), 1457–1472 (1984)
K. Seki, S. Komura, Viscoelasticity of vesicle dispersions. Phys. A 219(3–4), 253–289 (1995)
P. Olla, The behavior of closed inextensible membranes in linear and quadratic shear flows. Phys. A 278(1–2), 87–106 (2000)
S. Rochal, V. Lorman, G. Mennessier, Viscoelastic dynamics of spherical composite vesicles. Phys. Rev. E 71(2), 021905 (2005)
P.M. Vlahovska, Electrohydrodynamics of drops and vesicles. Annu. Rev. Fluid Mech. 51, 305–330 (2019)
J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1998)
M. Hope, M. Bally, G. Webb, P. Cullis, Production of large unilamellar vesicles by a rapid extrusion procedure characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta (BBA) Biomembr. 812(1), 55–65 (1985)
A.H. Kunding, M.W. Mortensen, S.M. Christensen, D. Stamou, A fluorescence-based technique to construct size distributions from single-object measurements: application to the extrusion of lipid vesicles. Biophys. J. 95(3), 1176–1188 (2008)
N. Kuečrka, M.-P. Nieh, J. Katsaras, Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta (BBA) Biomembr. 1808(11), 2761–2771 (2011). https://doi.org/10.1016/j.bbamem.2011.07.022
R. Dimova, Recent developments in the field of bending rigidity measurements on membranes. Adv. Colloid Interface Sci. 208, 225–234 (2014). https://doi.org/10.1016/j.cis.2014.03.003
J.F. Nagle, Experimentally determined tilt and bending moduli of single-component lipid bilayers. Chem. Phys. Lipids 205, 18–24 (2017). https://doi.org/10.1016/j.chemphyslip.2017.04.006
H.A. Faizi, S.L. Frey, J. Steinkühler, R. Dimova, P.M. Vlahovska, Bending rigidity of charged lipid bilayer membranes. Soft Matter 15(29), 6006–6013 (2019). https://doi.org/10.1039/C9SM00772E
H.L. Scott, A. Skinkle, E.G. Kelley, M.N. Waxham, I. Levental, F.A. Heberle, On the mechanism of bilayer separation by extrusion, or why your luvs are not really unilamellar. Biophys. J. 117(8), 1381–1386 (2019). https://doi.org/10.1016/j.bpj.2019.09.006
H. Seto, N.L. Yamada, M. Nagao, M. Hishida, T. Takeda, Bending modulus of lipid bilayers in a liquid-crystalline phase including an anomalous swelling regime estimated by neutron spin echo experiments. Eur. Phys. J. E 26(1–2), 217–223 (2008). https://doi.org/10.1140/epje/i2007-10315-0
L. Chiappisi, I. Hoffmann, M. Gradzielski, Membrane stiffening in chitosan mediated multilamellar vesicles of alkyl ether carboxylates. J. Colloid Interface Sci. 627, 160–167 (2022)
W. Helfrich, Steric interaction of fluid membranes in multilayer systems. Zeitschrift für Naturforschung A 33(3), 305–315 (1978)
J.B. Hayter, J. Penfold, Self-consistent structural and dynamic study of concentrated micelle solutions. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 77(8), 1851–1863 (1981)
M. Heinen, P. Holmqvist, A.J. Banchio, G. Nägele, Short-time diffusion of charge-stabilized colloidal particles: generic features. J. Appl. Crystallogr. 43(5 Part 1), 970–980 (2010). https://doi.org/10.1107/S002188981002724X
C. Haro-Perez, M. Quesada-Pérez, J. Callejas-Fernandez, E. Casals, J. Estelrich, R. Hidalgo-Alvarez, Interplay between hydrodynamic and direct interactions using liposomes. J. Chem. Phys. 119(1), 628–634 (2003)
J.F. Nagle, Introductory lecture: Basic quantities in model biomembranes. Faraday Discuss. 161, 11–150 (2013)
D. Marsh, Elastic curvature constants of lipid monolayers and bilayers. Chem. Phys. Lipid. 144(2), 146–159 (2006)
G. Niggemann, M. Kummrow, W. Helfrich, The bending rigidity of phosphatidylcholine bilayers: dependences on experimental method, sample cell sealing and temperature. J. Phys. II 5(3), 413–425 (1995)
M. Doktorova, D. Harries, G. Khelashvili, Determination of bending rigidity and tilt modulus of lipid membranes from real-space fluctuation analysis of molecular dynamics simulations. Phys. Chem. Chem. Phys. 19(25), 16806–16818 (2017). https://doi.org/10.1039/C7CP01921A
J. Henriksen, A.C. Rowat, E. Brief, Y. Hsueh, J. Thewalt, M. Zuckermann, J.H. Ipsen, Universal behavior of membranes with sterols. Biophys. J . 90(5), 1639–1649 (2006)
R.M. Venable, F.L.H. Brown, R.W. Pastor, Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem. Phys. Lipids 192, 60–74 (2015). https://doi.org/10.1016/j.chemphyslip.2015.07.014
H. Bouvrais, L. Duelund, J.H. Ipsen, Buffers affect the bending rigidity of model lipid membranes. Langmuir 30(1), 13–16 (2014)
J.R. Henriksen, J.H. Ipsen, Measurement of membrane elasticity by micro-pipette aspiration. Eur. Phys. J. E 14(2), 149–167 (2004). https://doi.org/10.1140/epje/i2003-10146-y
Y. Liu, Intermediate scattering function for macromolecules in solutions probed by neutron spin echo. Phys. Rev. E 95(2), 020501 (2017)
B. Brüning, R. Stehle, P. Falus, B. Farago, Influence of charge density on bilayer bending rigidity in lipid vesicles: a combined dynamic light scattering and neutron spin-echo study. Eur. Phys. J. E 36, 1–8 (2013)
J.L. Cascales, S.O. Costa, A. Garro, R.D. Enriz, Mechanical properties of binary DPPC/DPPS bilayers. RSC Adv. 2(31), 11743–11750 (2012)
A.-F. Bitbol, J.-B. Fournier, M.I. Angelova, N. Puff, Dynamical membrane curvature instability controlled by intermonolayer friction. J. Phys. Condens. Matter 23(28), 284102 (2011). https://doi.org/10.1088/0953-8984/23/28/284102
F. Campelo, C. Arnarez, S.J. Marrink, M.M. Kozlov, Helfrich model of membrane bending: from Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Adv. Colloid Interface Sci. 208, 25–33 (2014). https://doi.org/10.1016/j.cis.2014.01.018
J.-H. Lee, S.-M. Choi, C. Doe, A. Faraone, P.A. Pincus, S.R. Kline, Thermal fluctuation and elasticity of lipid vesicles interacting with pore-forming peptides. Phys. Rev. Lett. 105(3), 038101 (2010)
A.-F. Bitbol, D. Constantin, J.-B. Fournier, Bilayer elasticity at the nanoscale: the need for new terms. PLoS ONE 7(11), 48306 (2012). https://doi.org/10.1371/journal.pone.0048306
M. Hu, D.H. Jong, S.J. Marrink, M. Deserno, Gaussian curvature elasticity determined from global shape transformations and local stress distributions: a comparative study using the martini model. Faraday Discuss. 161, 365–382 (2013). https://doi.org/10.1039/C2FD20087B
Acknowledgements
The authors gratefully acknowledge Ryan Murphy and Lionel Porcar for assistance with the SANS data collection, and John Nagle for useful discussions. The authors also acknowledge the Partnership for Soft Condensed Matter (PSCM) for providing access to the DLS instrument and laboratory infrastructure used for sample preparation. EGK and MN acknowledge support from the Center for High Resolution Neutron Scattering, a partnership between the National Institute of Standards and Technology (NIST) and the National Science Foundation under Agreement No. DMR-2010792. The identification of any commercial products does not imply endorsement or recommendation by NIST. This work benefited from the use of the SasView application, originally developed under NSF award DMR-0520547. SasView contains code developed with funding from the European Union’s Horizon 2002 research and innovation programme under the SINE2020 project, grant agreement No 654000. This research was also supported in part by the National Science Foundation under Grant No. NSF PHY-1748958
Author information
Authors and Affiliations
Contributions
RG, AZ, and PMV developed the theory. IH, EGK, and MN performed the experiment. RG, IH, EGK, and MN wrote the article.
Corresponding authors
Additional information
This article is dedicated to Fyl Pincus whose pioneering achievements, inspiring approach, and revolutionary ideas in soft condensed matter and biological physics have had a great impact on the entire community in general, and especially on the present authors, including on RG, EGK, MN, and AZ.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Granek, R., Hoffmann, I., Kelley, E.G. et al. Dynamic structure factor of undulating vesicles: finite-size and spherical geometry effects with application to neutron spin echo experiments. Eur. Phys. J. E 47, 12 (2024). https://doi.org/10.1140/epje/s10189-023-00400-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/s10189-023-00400-9