Abstract
We study a two-dimensional model of an active isotropic colloid whose propulsion is linked to the interactions between solute particles of the bath. The colloid catalyzes a chemical reaction in its vicinity, that yields a local phase separation of solute particles. The density fluctuations of solute particles result in the enhanced diffusion of the colloid. Using numerical simulations, we thoroughly investigate the conditions under which activity occurs, and we establish a state diagram for the activity of the colloid as a function of the parameters of the model. We use the generated data to unravel a key observable that controls the existence and the intensity of activity: The filling fraction of the reaction area. Remarkably, we finally show that propulsion also occurs in three-dimensional geometries, which confirms the interest of this mechanism for experimental applications.
Graphic abstract

This is a preview of subscription content, access via your institution.











Data availability statement
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009). https://doi.org/10.1088/0034-4885/72/9/096601. arXiv:0812.2887
C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016). https://doi.org/10.1103/RevModPhys.88.045006
A. Zöttl, H. Stark, J. Phys. Condens. Matter 28, 253001 (2016). https://doi.org/10.1088/0953-8984/28/25/253001
P. Illien, R. Golestanian, A. Sen, Chem. Soc. Rev. 46, 5508 (2017). https://doi.org/10.1039/C7CS00087A
G. Rückner, R. Kapral, Phys. Rev. Lett. 98, 13 (2007). https://doi.org/10.1103/PhysRevLett.98.150603
R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007). https://doi.org/10.1088/1367-2630/9/5/126. arXiv:0701168 [cond-mat]
S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010). https://doi.org/10.1039/b918598d
S. Samin, R. Van Roij, Phys. Rev. Lett. 115, 1 (2015). https://doi.org/10.1103/PhysRevLett.115.188305. arXiv:1506.05695
A. Würger, Phys. Rev. Lett. 115, 188304 (2015). https://doi.org/10.1103/PhysRevLett.115.188304. arXiv:1504.01522v1
G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, C. Bechinger, H.-J. Kuemmerer, C. Bechinger, Soft Matter 7, 8810 (2011). https://doi.org/10.1039/c1sm05960b
I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, C. Bechinger, J. Phys. Condens. Matter 24, 284129 (2012). https://doi.org/10.1088/0953-8984/24/28/284129. arXiv:1110.2202
I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013). https://doi.org/10.1103/PhysRevLett.110.238301
G. Oshanin, M.N. Popescu, S. Dietrich, J. Phys. A Math. Theor. 50, 134001 (2017)
H.R. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 105, 1 (2010). https://doi.org/10.1103/PhysRevLett.105.268302. arXiv:1010.0470
S. Safaei, A.Y. Archereau, S.C. Hendy, G.R. Willmott, Soft Matter 15, 6742 (2019). https://doi.org/10.1039/c9sm00694j
A. Domínguez, M.N. Popescu, C.M. Rohwer, S. Dietrich, Phys. Rev. Lett. 125, 268002 (2020)
R. Golestanian, Phys. Rev. Lett. 102, 188305 (2009). https://doi.org/10.1103/PhysRevLett.102.188305. arXiv:0904.3044
C. Valeriani, R.J. Allen, D. Marenduzzo, J. Chem. Phys. 132, 204904 (2010). https://doi.org/10.1063/1.3428663
R. Golestanian (2019). arXiv:1909.03747
P. De Buyl, A.S. Mikhailov, R. Kapral, Europhys. Lett. 103, 60009 (2013). https://doi.org/10.1209/0295-5075/103/60009
M. De Corato, I. Pagonabarraga, L.K.E.A. Abdelmohsen, S. Sánchez, M. Arroyo, Phys. Rev. Fluids 5, 122001 (2020). arXiv:2008.03251
D. Boniface, C. Cottin-Bizonne, R. Kervil, C. Ybert, F. Detcheverry, Phys. Rev. E 99, 062605 (2019). https://doi.org/10.1103/PhysRevE.99.062605
A.Y. Rednikov, Y.S. Ryazantsev, M.G. Velarde, Phys. Fluids 6, 451 (1994). https://doi.org/10.1016/0017-9310(94)90036-1
S. Michelin, E. Lauga, D. Bartolo, Phys. Fluids 25, 061701 (2013)
S. Michelin, E. Lauga, J. Fluid Mech. 747, 572 (2014). https://doi.org/10.1017/jfm.2014.158
W.F. Hu, T.S. Lin, S. Rafai, C. Misbah, Phys. Rev. Lett. 123, 238004 (2019). https://doi.org/10.1103/PhysRevLett.123.238004
A. Farutin, M.S. Rizvi, W.F. Hu, T.S. Lin, S. Rafaï, C. Misbah, 1 (2021). arXiv:2112.12023
S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13, 073021 (2011). https://doi.org/10.1088/1367-2630/13/7/073021
Z. Izri, M.N. Van Der Linden, S. Michelin, O. Dauchot, Phys. Rev. Lett. 113, 248302 (2014). https://doi.org/10.1103/PhysRevLett.113.248302
S. Herminghaus, C.C. Maass, C. Krüger, S. Thutupalli, L. Goehring, C. Bahr, Soft Matter 10, 7008 (2014). https://doi.org/10.1039/c4sm00550c
C.C. Maass, C. Krüger, S. Herminghaus, C. Bahr, Annu. Rev. Condensed Matter Phys. 7, 171 (2016). https://doi.org/10.1146/annurev-conmatphys-031115-011517
P. Illien, C. De Blois, Y. Liu, M.N. Van Der Linden, O. Dauchot, Phys. Rev. E 101, 0 40602 (2020). https://doi.org/10.1103/PhysRevE.101.040602
A. Izzet, P.G. Moerman, P. Gross, J. Groenewold, A.D. Hollingsworth, J. Bibette, J. Brujic, Phys. Rev. X 10, 021035 (2020). https://doi.org/10.1103/PhysRevX.10.021035
T. Zinn, L. Sharpnack, T. Narayanan, Phys. Rev. Res. 2, 033177 (2020). https://doi.org/10.1103/PhysRevResearch.2.033177
R. Dattani, E.F. Semeraro, T. Narayanan, Soft Matter 13, 2817 (2017). https://doi.org/10.1039/C6SM02855A
E.F. Semeraro, R. Dattani, T. Narayanan, J. Chem. Phys. 148, 014904 (2018). https://doi.org/10.1063/1.5008400
A. Torres-Carbajal, S. Herrera-Velarde, R. Castañeda-Priego, Phys. Chem. Chem. Phys. 17, 19557 (2015). https://doi.org/10.1039/c5cp02777b
A. Torres-Carbajal, R. Castañeda-Priego, Phys. Chem. Chem. Phys. 20, 6917 (2018). https://doi.org/10.1039/c7cp08302e
J. Decayeux, V. Dahirel, M. Jardat, P. Illien, Phys. Rev. E 104, 1 (2021). https://doi.org/10.1103/PhysRevE.104.034602. arXiv:2103.13244
R. Dattani, E.F. Semeraro, T. Narayanan, Soft Matter 13, 2817 (2017). https://doi.org/10.1039/C6SM02855A
D.L. Ermak, J. Chem. Phys. 62, 4189 (1975)
D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Simulations, 2nd edn. (Academic Press, Boston, 2002)
J. Bialké, T. Speck, H. Löwen, J. Non-Cryst. Solids 407, 367 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.08.011. arXiv:1407.6828
Author information
Authors and Affiliations
Contributions
JD made the investigation. JD did the data curation. All authors contributed to the methodology, the formal analysis, and writing.
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Decayeux, J., Jardat, M., Illien, P. et al. Conditions for the propulsion of a colloid surrounded by a mesoscale phase separation. Eur. Phys. J. E 45, 96 (2022). https://doi.org/10.1140/epje/s10189-022-00247-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/s10189-022-00247-6