Skip to main content

Intrinsic stochasticity and the emergence of collective behaviours in insect swarms

Abstract

Intrinsic stochasticity associated with finite population size is fundamental to the emergence of collective behaviours in insect swarms. It has been assumed that this intrinsic stochasticity is purely additive (position independent) in quiescent (unperturbed) swarms. Here, I identify the hallmarks of intrinsic multiplicative (position dependent) stochasticity and show that they are evident in quiescent laboratory swarms of the non-biting midge Chironomus riparius. In accordance with theoretical expectations, the smallest well-documented laboratory swarms (containing between 14 and 46 individuals) are found to have q-Gaussian density profiles with \(q>\) 1, whereas larger laboratory swarms have Gaussian (\(q=\)1) density profiles. I show that these newly identified states are analogous to interstellar clouds and thereby extend a long-standing analogy between insect swarms and self-gravitating systems. Smaller laboratory swarms have been observed and are predicted to be gas-like, filling the available space rather than occupying just a small proportion of it. The new results unify laboratory swarms with wild swarms. Unlike laboratory swarms, wild swarms must contend with environmental (extrinsic) noise and have density profiles that are accurately represented by q-Gaussians with \(q<\) 1. Finally, it is shown how intrinsic multiplicative noise allows for the nucleation of swarms away from prominent visual features (basins of attraction) known as swarm markers.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The experimental data used in the present study was published by Sinhuber et al. [20].]

References

  1. 1.

    A. Okubo, Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Adv. Biophys. 22, 1–94 (1986)

    Google Scholar 

  2. 2.

    D.H. Kelley, N.T. Ouellette, Emergent dynamics of laboratory insect swarms. Sci. Rep. 3(1073), 1–7 (2013)

    Google Scholar 

  3. 3.

    A. Attanasi et al., Collective behaviour without collective order in wild swarms of midges. PLoS Comput. Biol. 10, e1003697 (2014a)

    Google Scholar 

  4. 4.

    A. Attanasi et al., Finite-size scaling as a way to probe near-criticality in natural swarms. Phys. Rev. Lett. 113, 238102 (2014)

    Google Scholar 

  5. 5.

    A. Cavagna et al., Dynamic scaling in natural swarms. Nat. Phys. 13, 914–918 (2017)

    Google Scholar 

  6. 6.

    J.G. Puckett, N.T. Ouellette, Determining asymptotically large population sizes in insect swarms. J. R. Soc. Int. 11, 20140710 (2014)

    Google Scholar 

  7. 7.

    J.G. Puckett, D.H. Kelley, N.T. Ouellette, Searching for effective forces in laboratory insect swarms. Sci. Rep. 4, 4766 (2014)

    Google Scholar 

  8. 8.

    R. Ni, N.T. Ouellette, On the tensile strength of insect swarms. Phys. Biol. 13, 045002 (2016)

    Google Scholar 

  9. 9.

    M. Sinhuber, N.T. Ouellette, Phase coexistence in insect swarms. Phys. Rev. Lett. 119, 178003 (2017)

    Google Scholar 

  10. 10.

    M. Sinhuber, K. van der Vaart, N.T. Ouellette, Response of insect swarms to dynamic illumination perturbations. J. R. Soc. Interface 16, 20180739 (2019)

    Google Scholar 

  11. 11.

    K. van der Vaart, M. Sinhuber, A.M. Reynolds, N.T. Ouellette, Mechanical spectroscopy of insect swarms. Sci. Adv. 5, eaaw9305 (2019)

    Google Scholar 

  12. 12.

    K. van der Vaart, M. Sinhuber, A.M. Reynolds, N.T. Ouellette, Environmental perturbations induce correlations in midge swarms. J. R. Soc. Interface 17, 20200018 (2020)

    Google Scholar 

  13. 13.

    A.M. Reynolds, M. Sinhuber, N.T. Ouellette, Are midge swarms bound together by an effective velocity-dependent gravity? Euro. Phys. J. E 40, 46 (2017)

    Google Scholar 

  14. 14.

    A.M. Reynolds, Langevin dynamics encapsulate the microscopic and emergent macroscopic properties of midge swarms. J. R. Soc. Int. 15, 20170806 (2018)

    Google Scholar 

  15. 15.

    A.M. Reynolds, Fluctuating environments drive insect swarms into a new state that is robust to perturbations. Europhys. Lett. 124, 38001 (2018)

    Google Scholar 

  16. 16.

    A.M. Reynolds, On the origin of the tensile strength of insect swarms. Phys. Biol. 16, 046002 (2019)

    Google Scholar 

  17. 17.

    A.M. Reynolds, On the emergence of gravitational-like forces in insect swarms. J. R. Soc. Int. 16, 20190404 (2019)

    Google Scholar 

  18. 18.

    A.M. Reynolds, Insect swarms can be bound together by repulsive forces. Euro. Phys. J. E. 43, 39 (2020)

    Google Scholar 

  19. 19.

    S.B. Poda et al., Sex aggregation and species segregation cues in swarming mosquitoes: role of ground visual markers. Para. Vects. 12, 589 (2019)

    Google Scholar 

  20. 20.

    M. Sinhuber, K. van der Vaart, R. Ni, J.G. Puckett, D.H. Kelley, N.T. Ouellette, Three-dimensional time-resolved trajectories from laboratory insect swarms. Sci. Data 6, 190036 (2019)

    Google Scholar 

  21. 21.

    L. Borland, Microscopic dynamics of the nonlinear Fokker–Planck equation: a phenomenological model. Phys. Rev. E 57, 6634–6642 (1998)

    Google Scholar 

  22. 22.

    C. Tsallis, Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Google Scholar 

  23. 23.

    K.P. Burnham, D.R. Anderson, Multimodal inference: understanding AIC and BIC in model selection. Soc. Methods Res. 33, 261–304 (2004)

    Google Scholar 

  24. 24.

    Gorbonos, D. et al. Long-range acoustic interactions in insect swarms: an adaptive gravity model. New J. Phys. 18, 073042 (2016)

  25. 25.

    D. Gorbonos, N.S. Gov, Stable swarming using adaptive long-range interactions. Phys. Rev. E 95, 042405 (2017)

    Google Scholar 

  26. 26.

    D. Gorbonos et al., Similarities between insect swarms and isothermal globular clusters. Phys. Rev. Res. 2, 013271 (2020)

    Google Scholar 

  27. 27.

    A.R. Plastino, S\(_{\rm q}\) entropy and self-gravitating systems. Europhys. News 36, 208 (2005)

    Google Scholar 

  28. 28.

    F.H. Shu et al., Galactic shocks in an interstellar medium with two stable phases. Astrophys. J. 173, 557–592 (1972)

    Google Scholar 

  29. 29.

    Y. Viala, Structure et critères d’effondrement gravitationnel d’une sphère polytropique d’indice négatif. Comp. Rend. Acad. Sci. (Paris) 275B, 117–120 (1972)

    Google Scholar 

  30. 30.

    D. Shishika et al., Male motion coordination in anopheline mating swarms. Sci. Rep. 4, 6318 (2014)

    Google Scholar 

  31. 31.

    A. Diabaté et al., Spatial swarm segregation and reproductive isolation between the molecular forms of Anopheles gambiae. Proc. R. Soc. B. 276, 4215–4222 (2009)

    Google Scholar 

  32. 32.

    C.A. Yates, Inherent noise can facilitate coherence in collective swarm motion. Proc. Nat. Acad. Sci. 106, 5464–5469 (2009)

    Google Scholar 

  33. 33.

    J. Jhawar et al., Noise-induced schooling of fish. Nat. Phys. 16, 488–493 (2020)

    Google Scholar 

Download references

Acknowledgements

The work at Rothamsted forms part of the Smart Crop Protection (SCP) strategic programme (BBS/OS/CP/000001) funded through Biotechnology and Biological Sciences Research Council’s Industrial Strategy Challenge Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andy M. Reynolds.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reynolds, A.M. Intrinsic stochasticity and the emergence of collective behaviours in insect swarms. Eur. Phys. J. E 44, 22 (2021). https://doi.org/10.1140/epje/s10189-021-00040-x

Download citation