Skip to main content

The role of inter-particle friction on rheology and texture of wet granular flows

Abstract.

In order to get insight into the rheology and texture of rough unsaturated granular flows, we study the effects of the inter-particle friction coefficient on the macroscopic attributes and the texture variables of steady-state shearing flow of wet granular materials by relying on three-dimensional (3D) particle dynamics simulations. The macroscopic attributes are characterized by the macroscopic friction coefficient, macroscopic cohesion, and the packing fraction. The microstructural variables are characterized by the fabric and force anisotropies, the coordination number, and the stress transmission ratio. We show that the macroscopic observables behave as a function of the inertial number as a dry case for different values of the inter-particle friction coefficient. In particular, the macroscopic friction coefficient increases and the packing fraction decreases rapidly for small values of the friction coefficient, then they almost reach plateaus for higher values of the friction coefficient. Interestingly, all the macroscopic observables nicely behave as a function of the small values of the friction coefficient. Similarly, we also observe these characteristics for the fabric and force anisotropies and the coordination number as well as the stress transmission ratio which reflects the intermediate relationship between the microstructure and the mechanical behavior of such flows.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1

    T. Mikami, H. Kamiya, M. Horio, Chem. Eng. Sci. 53, 1927 (1998)

    Article  Google Scholar 

  2. 2

    M.J. Jiang, S. Leroueil, J.M. Konrad, Comput. Geotech. 31, 473 (2004)

    Article  Google Scholar 

  3. 3

    P.G. Rognon, J.N. Roux, D. Wolf, M. Naaim, F. Chevoir, Europhys. Lett. 74, 644 (2006)

    ADS  Article  Google Scholar 

  4. 4

    P. Rognon, J.N. Roux, M. Naaim, F. Chevoir, J. Fluids Mech. 596, 21 (2008)

    ADS  Article  Google Scholar 

  5. 5

    C.C. Liao, S.S. Hsiau, Powder Technol. 197, 222 (2010)

    Article  Google Scholar 

  6. 6

    E. Rondet, M. Delalonde, T. Ruiz, J.P. Desfoursb, Chem. Eng. J. 164, 376 (2010)

    Article  Google Scholar 

  7. 7

    F. Radjai, J.N. Roux, A. Daouadji, J. Eng. Mech. 143, 04017002 (2017)

    Article  Google Scholar 

  8. 8

    A. Jarray, V. Magnanimo, S. Luding, Powder Technol. 341, 126 (2019)

    Article  Google Scholar 

  9. 9

    S. Hao, R. Sudeshna, W. Thomas, M. Vanessa, L. Stefan, Granular Matter 22, 14 (2019)

    Google Scholar 

  10. 10

    T.T. Vo, J. Rheol. 64, 1133 (2020)

    ADS  Article  Google Scholar 

  11. 11

    L. Aarons, S. Sundaresan, Powder Technol. 183, 340 (2008)

    Article  Google Scholar 

  12. 12

    F. Boyer, E. Guazzelli, O. Pouliquen, Phys. Rev. Lett. 107, 18 (2011)

    Article  Google Scholar 

  13. 13

    D.M. Mueth, G. Debrégeas, G.S. Karczmar, P. Eng, S.R. Nagel, H.M. Jaeger, Nature 406, 385 (2000)

    ADS  Article  Google Scholar 

  14. 14

    N. Berger, E. Azéma, J.F. Douce, F. Radjai, EPL 112, 64004 (2015)

    ADS  Article  Google Scholar 

  15. 15

    V.D. Than, S. Khamseh, A.M.A. Tang, J.M. Pereira, F. Chevoir, J.N. Roux, J. Eng. Mech. 143, C4016001 (2017)

    Article  Google Scholar 

  16. 16

    M. Badetti, A. Fall, D. Hautemayou, F. Chevoir, P. Aimedieu, S. Rodts, J.N. Roux, J. Rheol. 62, 1175 (2018)

    ADS  Article  Google Scholar 

  17. 17

    M. Badetti, A. Fall, F. Chevoir, J.N. Roux, Eur. Phys. J. E 41, 68 (2018)

    Article  Google Scholar 

  18. 18

    GDR-MiDi, Eur. Phys. J. E 14, 341 (2004)

    Article  Google Scholar 

  19. 19

    F. da Cruz, S. Emam, M. Prochnow, J.N. Roux, F. Chevoir, Phys. Rev. E 72, 021309 (2005)

    ADS  Article  Google Scholar 

  20. 20

    P. Jop, Y. Forterre, O. Pouliquen, Nature 441, 727 (2006)

    ADS  Article  Google Scholar 

  21. 21

    M. Trulsson, B. Andreotti, P. Claudin, Phys. Rev. Lett. 109, 118305 (2012)

    ADS  Article  Google Scholar 

  22. 22

    S. Khamseh, J.N. Roux, F. Chevoir, Phys. Rev. E 92, 022201 (2015)

    ADS  Article  Google Scholar 

  23. 23

    S. Roy, S. Luding, T. Weinhart, New J. Phys. 19, 043014 (2017)

    ADS  Article  Google Scholar 

  24. 24

    L. Amarsid, J.Y. Delenne, P. Mutabaruka, Y. Monerie, F. Perales, F. Radjai, Phys. Rev. E 96, 012901 (2017)

    ADS  Article  Google Scholar 

  25. 25

    T.T. Vo, P. Mutabaruka, S. Nezamabadi, J.Y. Delenne, F. Radjai, Phys. Rev. E 101, 032906 (2020)

    ADS  Article  Google Scholar 

  26. 26

    T.T. Vo, Erosion dynamics of wet particle agglomerates, Comput. Part. Mech. (2020) https://doi.org/10.1007/s40571-020-00357-y

  27. 27

    O. Pouliquen, C. Cassar, P. Jop, Y. Forterre, M. Nicolas, J. Stat. Mech. Theor. Exp. 2006, 7020 (2006)

    Article  Google Scholar 

  28. 28

    Y. Forterre, O. Pouliquen, Annu. Rev. Fluid Mech. 40, 1 (2008)

    ADS  Article  Google Scholar 

  29. 29

    F. Radjai, V. Richefeu, Philos. Trans. R. Soc. A 367, 5123 (2009)

    ADS  Article  Google Scholar 

  30. 30

    K. Mair, K.M. Frye, C. Marone, J. Geophys. Res.: Solid Earth 107, ECV 4 (2002)

    Article  Google Scholar 

  31. 31

    Y. Guo, J.K. Morgan, J. Geophys. Res.: Solid Earth 109, 12305 (2004)

    ADS  Article  Google Scholar 

  32. 32

    S. Luding, Particul. Sci. Technol. 26, 33 (2008)

    Article  Google Scholar 

  33. 33

    J. Härtl, J.Y. Ooi, Granular Matter 10, 263 (2004)

    Article  Google Scholar 

  34. 34

    J. Härtl, J.Y. Ooi, Powder Technol. 212, 231 (2011)

    Article  Google Scholar 

  35. 35

    K. Kamrin, G. Koval, Comput. Part. Mech. 1, 169 (2014)

    Article  Google Scholar 

  36. 36

    C. Ness, J.Y. Ooi, J. Sun, M. Marigo, P. McGuire, H. Xu, H. Stitt, AIChE J. 63, 3069 (2017)

    Article  Google Scholar 

  37. 37

    V. Sivadasan, E. Lorenz, A.G. Hoekstra, D. Bonn, Phys. Fluids 31, 103103 (2019)

    ADS  Article  Google Scholar 

  38. 38

    D. Lootens, H. van Damme, Y. Hémar, P. Hébraud, Phys. Rev. Lett. 95, 268302 (2005)

    ADS  Article  Google Scholar 

  39. 39

    J.Y. Moon, S. Dai, L. Chang, J.S. Lee, R.I. Tanner, J. Non-Newton. Fluid Mech. 223, 233 (2015)

    MathSciNet  Article  Google Scholar 

  40. 40

    F. Tapia, O. Pouliquen, E. Guazzelli, Phys. Rev. Fluids 4, 104302 (2019)

    ADS  Article  Google Scholar 

  41. 41

    F. da Cruz, S. Emam, M. Prochnow, J.N. Roux, F. Chevoir, Phys. Rev. E 72, 021309 (2005)

    ADS  Article  Google Scholar 

  42. 42

    C.P. Hsu, S.N. Ramakrishna, M. Zanini, N.D. Spencer, L. Isa 115, 5117 (2018)

    Google Scholar 

  43. 43

    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)

  44. 44

    J. Schäfer, S. Dippel, D.E. Wolf, J. Phys. I 6, 5 (1996)

    Google Scholar 

  45. 45

    S. Dippel, G.G. Batrouni, D.E. Wolf, Phys. Rev. E 56, 3645 (1997)

    ADS  Article  Google Scholar 

  46. 46

    S. Luding, Collisions and Contacts between two particles, in Physics of Dry Granular Media, NATO ASI Ser. E350, edited by H.J. Herrmann, J.P. Hovi, S. Luding (Kluwer Academic Publishers, Dordrecht, 1998) p. 285

  47. 47

    G. Lian, C. Thornton, M. Adams, J. Colloid Interface Sci. 161, 138 (1993)

    ADS  Article  Google Scholar 

  48. 48

    M. Scheel, R. Seemann, M. Brinkmann, M.D. Michiel, A. Sheppard, S. Herminghaus, J. Phys.: Condens. Matter 20, 494236 (2008)

    Google Scholar 

  49. 49

    V. Richefeu, M. El Youssoufi, F. Radjai, Phys. Rev. E 73, 051304 (2006)

    ADS  Article  Google Scholar 

  50. 50

    J.Y. Delenne, V. Richefeu, F. Radjai, J. Fluid Mech. 762, R5 (2012)

    Article  Google Scholar 

  51. 51

    T.T. Vo, S. Nezamabadi, P. Mutabaruka, J.Y. Delenne, E. Izard, R. Pellenq, F. Radjai, Eur. Phys. J. E 42, 127 (2019)

    Article  Google Scholar 

  52. 52

    T.T. Vo, S. Nezamabadi, P. Mutabaruka, J.Y. Delenne, F. Radjai, Nat. Commun. 11, 1476 (2020)

    ADS  Article  Google Scholar 

  53. 53

    C. Willett, M. Adans, S. Johnson, J. Seville, Langmuir 16, 9396 (2000)

    Article  Google Scholar 

  54. 54

    V. Richefeu, F. Radjai, M.S.E. Youssoufi, Eur. Phys. J. E 21, 359 (2007)

    Article  Google Scholar 

  55. 55

    T.T. Vo, P. Mutabaruka, S. Nezamabadi, J.Y. Delenne, E. Izard, R. Pellenq, F. Radjai, Mech. Res. Commun. 92, 1 (2018)

    Article  Google Scholar 

  56. 56

    T.T. Vo, P. Mutabaruka, J.-Y. Delenne, S. Nezamabadi, F. Radjai, EPJ Web of Conferences 140, 08021 (2017)

    Article  Google Scholar 

  57. 57

    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Martinus Nijhoff Publishers, The Hague, The Netherlands, 1983)

  58. 58

    G. Lefebvre, P. Jop, Phys. Rev. E 8, 032205 (2013)

    ADS  Article  Google Scholar 

  59. 59

    S. Mandal, M. Nicolas, O. Pouliquen, Proc. Natl. Acad. Sci. U.S.A. 117, 8366 (2020)

    Article  Google Scholar 

  60. 60

    J. Gong, J. Zou, L. Zhao, L. Li, Z. Nie, Comput. Geotech. 113, 103105 (2019)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thanh-Trung Vo.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vo, TT., Nguyen-Thoi, T. The role of inter-particle friction on rheology and texture of wet granular flows. Eur. Phys. J. E 43, 65 (2020). https://doi.org/10.1140/epje/i2020-11987-2

Download citation

Keywords

  • Flowing Matter: Granular Materials