Skip to main content
Log in

Role of an oscillatory electric field on the Lehmann rotation of cholesteric droplets

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

This paper deals with the Lehmann rotation of banded cholesteric droplets subjected to a temperature gradient when they coexist with their own isotropic liquid. I show that their angular rotation velocity increases --in absolute value-- when they are subjected to an additional AC electric field in the conducting regime. This velocity increase is correlated with a prolate distortion of the droplets and the probable presence of electrohydrodynamical toroidal circulation flows inside and outside the droplets. I propose that the coupling between these flows and the director field is responsible for the increase of the angular velocity of the texture. The origin of these flows is discussed qualitatively in the framework of the leaky dielectric model by taking into account the generation of charges both in the bulk via a Carr-Helfrich mechanism (Tarasov, Krekhow and Kramer model) and at the surface of the droplet (Taylor-Melcher model).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974)

  2. P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, CRC Press, Boca Raton, 2005)

  3. O. Lehmann, Ann. Phys. (Leipzig) 307, 649 (1900)

    Article  ADS  Google Scholar 

  4. P. Oswald, A. Dequidt, Phys. Rev. Lett. 100, 217802 (2008)

    Article  ADS  Google Scholar 

  5. J. Yoshioka, F. Ito, Y. Suzuki, Y. Tabe, Soft Matter 10, 5869 (2014)

    Article  ADS  Google Scholar 

  6. T. Yamamoto, M. Kuroda, M. Sano, EPL 109, 46001 (2015)

    Article  ADS  Google Scholar 

  7. J. Yoshioka, F. Araoka, Nat. Commun. 9, 432 (2018)

    Article  ADS  Google Scholar 

  8. F.M. Leslie, Proc. R. Soc. A 307, 359 (1968)

    ADS  Google Scholar 

  9. P. Oswald, Eur. Phys. J. E 35, 10 (2012)

    Article  Google Scholar 

  10. P. Oswald, EPL 108, 36001 (2014) 59901(E) (2014)

    Article  ADS  Google Scholar 

  11. P. Oswald, A. Dequidt, G. Poy, Liq. Cryst. Rev. 7, 142 (2019)

    Article  Google Scholar 

  12. P. Oswald, G. Poy, Phys. Rev. E 98, 032704 (2018)

    Article  ADS  Google Scholar 

  13. P. Oswald, J. Ignés-Mullol, A. Dequidt, Soft Matter 15, 2591 (2019)

    Article  ADS  Google Scholar 

  14. G.K. Auernhammer, J. Zhao, B. Ullrich, D. Vollmer, Eur. Phys. J. E 30, 387 (2009)

    Article  Google Scholar 

  15. J. Yoshioka, K. Fukao, Phys. Rev. E 99, 022702 (2019)

    Article  ADS  Google Scholar 

  16. N.V. Madhusudana, R. Pratibha, Mol. Cryst. Liq. Cryst. 5, 43 (1987)

    Article  Google Scholar 

  17. N.V. Madhusudana, R. Pratibha, Liq. Cryst. 5, 1827 (1989)

    Article  Google Scholar 

  18. Yu.I. Timirov, O.S. Tarasov, O.A. Skaldin, Tech. Phys. Lett. 33, 209 (2007)

    Article  ADS  Google Scholar 

  19. Yu.I. Timirov, O.A. Skaldin, E.R. Basyrova, Tech. Phys. Lett. 41, 336 (2015)

    Article  ADS  Google Scholar 

  20. A. Dequidt, P. Oswald, Eur. Phys. J. E 24, 157 (2007)

    Article  Google Scholar 

  21. O.S. Tarasov, A.P. Krekhov, L. Kramer, Phys. Rev. E 68, 031708 (2003)

    Article  ADS  Google Scholar 

  22. O.S. Tarasov, A.P. Krekhov, L. Kramer, Rotation of cholesteric drops under dc electric field, preprint (2003). This paper was never published after the death of L. Kramer

  23. O. Tarasov, Stuctural Transitions and Dynamics of Liquid Crystals under Flows and Electric Fields, PhD Thesis, Bayreuth University, 2003

  24. O.A. Skaldin, O.S. Tarasov, Yu.I. Timirov, E.R. Basyrova, J. Exp. Theor. Phys. 126, 255 (2018)

    Article  Google Scholar 

  25. G.I. Taylor, Proc. R. Soc. Lond. A 291, 159 (1966)

    Article  ADS  Google Scholar 

  26. J.R. Melcher, G.I. Taylor, Annu. Rev. Fluid Mech. 1, 111 (1969)

    Article  ADS  Google Scholar 

  27. S. Torza, R.G. Cox, S.G. Mason, Philos. Trans. R. Soc. Lond. 269, 259 (1971)

    Google Scholar 

  28. P. Oswald, A. Dequidt, A. Żywociński, Phys. Rev. E 77, 061703 (2008)

    Article  ADS  Google Scholar 

  29. P. Oswald, EPL 100, 26001 (2012)

    Article  ADS  Google Scholar 

  30. P. Oswald, G. poy, F. Vittoz, V. Popa-Nita, Liq. Cryst. 40, 734 (2013)

    Article  Google Scholar 

  31. G. Poy, F. Bunel, P. Oswald, Phys. Rev. E 96, 012705 (2017)

    Article  ADS  Google Scholar 

  32. P. Oswald, G. Poy, Phys. Rev. E 91, 032502 (2015)

    Article  ADS  Google Scholar 

  33. J. Baudry, S. Pirkl, P. Oswald, Phys. Rev. E 60, 2990 (1999)

    Article  ADS  Google Scholar 

  34. S. Santra, S. Mandal, S. Chakraborty, Phys. Fluids 30, 062003 (2018)

    Article  ADS  Google Scholar 

  35. S. Faetti, V. Palleschi, Phys. Rev. A 30, 3241 (1984)

    Article  ADS  Google Scholar 

  36. S. Bono, Y. Maruyamaa, K. Nishiyamaa, Y. Tabe, Mol. Cryst. Liq. Cryst. 683, 39 (2019)

    Article  Google Scholar 

  37. A.G. Petrov, G. Durand, Liq. Cryst. 17, 543 (1994)

    Article  Google Scholar 

  38. L.M. Blinov, Electro-Optical and Magneto-Optical Properties of Liquid Crystals (John Wiley & Sons, Hoboken, 1983)

  39. B.R. Ratna, R. Shashidhar, Mol. Cryst. Liq. Cryst. 6, 278 (1976)

    Google Scholar 

  40. J. Thoen, G. Menu, Mol. Cryst. Liq. Cryst. 97, 163 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Oswald.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary material

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oswald, P. Role of an oscillatory electric field on the Lehmann rotation of cholesteric droplets. Eur. Phys. J. E 43, 11 (2020). https://doi.org/10.1140/epje/i2020-11935-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11935-2

Keywords

Navigation