Skip to main content

A novel combinatorial approach of quantitative microscopy and in silico modeling deciphers Arf1-dependent Golgi size regulation


Regulation of organelle size and shape is a poorly understood but fascinating subject. Several theoretical studies were reported on Golgi size regulation, but a combination of experimental and theoretical approaches is rare. In combination with the quantitative microscopy and a coarse-grained simulation model, we have developed a technique to gain insights into the functions of potential regulators of Golgi size in budding yeast Saccharomyces cerevisiae. To validate our method, we tested wild-type and arf1\(\Delta\) strain harboring early and late Golgi cisternae labeled with green and red fluorescent fusions. Our concentration-dependent maturation model prediction concurs with most of the experimental results for both wild-type and arf1\(\Delta\) strains. Decisive match of simulation and experimental data provide insight into such specific factor's function in regulating the Golgi size. Details of the complex multifactorial network of Golgi size regulation can be deciphered in the future using a similar combination of quantitative microscopy and in silico model.

Graphical abstract

This is a preview of subscription content, access via your institution.


  1. S. Dmitrieff, M. Rao, P. Sens, Proc. Natl. Acad. Sci. U.S.A. 110, 15692 (2013)

    ADS  Article  Google Scholar 

  2. Q. Vagne, P. Sens, Biophys. J. 114, 947 (2018)

    ADS  Article  Google Scholar 

  3. E. Losev et al., Nature 441, 1002 (2006)

    ADS  Article  Google Scholar 

  4. K. Matsuura-Tokita et al., Nature 441, 1007 (2006)

    ADS  Article  Google Scholar 

  5. M. Bhave et al., J. Cell Sci. 127, 250 (2014)

    Article  Google Scholar 

  6. J. Kuhnle et al., Biophys. J. 98, 2839 (2010)

    ADS  Article  Google Scholar 

  7. Y. Suda, A. Nakano, Traffic 13, 505 (2012)

    Article  Google Scholar 

  8. S. Wooding, H.R. Pelham, Mol. Biol. Cell 9, 2667 (1998)

    Article  Google Scholar 

  9. J. Bigay et al., Nature 426, 563 (2003)

    ADS  Article  Google Scholar 

  10. R. Beck et al., Proc. Natl. Acad. Sci. U.S.A. 105, 11731 (2008)

    ADS  Article  Google Scholar 

  11. J.B. Moseley, B.L. Goode, Microbiol. Mol. Biol. Rev. 70, 605 (2006)

    Article  Google Scholar 

  12. J.G. Donaldson, Biochem. J. 414, (2008)

    Article  Google Scholar 

  13. E.C. Gaynor et al., Mol. Biol. Cell 9, 653 (1998)

    Article  Google Scholar 

  14. Y. Kondo et al., Cell Struct. Funct. 37, 141 (2012)

    Article  Google Scholar 

  15. M. Krauss et al., J. Biol. Chem. 283, 27717 (2008)

    Article  Google Scholar 

  16. R. Lundmark et al., Biochem. J. 414, 189 (2008)

    Article  Google Scholar 

  17. W. Nakai et al., Mol. Biol. Cell 24, 2570 (2013)

    Article  Google Scholar 

  18. R.A. Kahn et al., Biochem. Soc. Trans. 33, 1269 (2005)

    Article  Google Scholar 

  19. A. Wach et al., Yeast 10, 1793 (1994)

    Article  Google Scholar 

  20. J. Kunz et al., Cell 73, 585 (1993)

    Article  Google Scholar 

  21. R.D. Gietz, R.A. Woods, Methods Enzymol. 350, 87 (2002)

    Article  Google Scholar 

  22. A.T. Hammond, B.S. Glick, Traffic 1, 935 (2000)

    Google Scholar 

  23. B.J. Bevis et al., Nat. Cell Biol. 4, 750 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dibyendu Bhattacharyya.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iyer, P., Sutradhar, S., Paul, R. et al. A novel combinatorial approach of quantitative microscopy and in silico modeling deciphers Arf1-dependent Golgi size regulation. Eur. Phys. J. E 42, 154 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Living systems: Cellular Processes