Skip to main content
Log in

Numerical modelling of long flexible fibers in homogeneous isotropic turbulence

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We numerically investigated the transport, deformation and buckling events of an isolated elastic fiber in Taylor-Green vortices and studied the dynamics of long filaments in homogeneous isotropic turbulence. The fiber is modelled by an assembly of spherical beads. The contact between beads enforces the inextensibility of the filament while bending is accounted for by the Gears Bead Model (GBM) proposed by Delmotte et al. (2015). In the cellular Taylor-Green flow, the buckling probability is a function of a dimensionless number, called Sperm number, which is a balance between the compression rate of the flow and the elastic response of the filament. The shapes of the filament and its ability to buckle have been successfully validated through comparisons with experiments from the work by Quennouz et al. (2015). The deformation statistics of long flexible fibers in sustained homogeneous isotropic turbulence were analyzed for various flow and fiber material conditions. Two regimes have been identified depending on the ratio of fiber length to persistence length which is a measure of turbulent forcing to flexibility. The numerical results are in good agreement with existing experimental data (C. Brouzet et al., Phys. Rev. Lett. 112, 074501 (2014)) validating the assumptions of our model for the configurations we investigated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.S. Guasto, R. Rusconi, R. Stocker, Annu. Rev. Fluid Mech. 44, 373 (2012)

    Article  ADS  Google Scholar 

  2. F. Lundell, L.D. Söderberg, P.H. Alfredsson, Annu. Rev. Fluid Mech. 43, 195 (2011)

    Article  ADS  Google Scholar 

  3. R. Cox, J. Fluid Mech. 45, 625 (1971)

    Article  ADS  Google Scholar 

  4. A. Meunier, J. Phys. II 4, 561 (1994)

    Google Scholar 

  5. G.A. Voth, A. Soldati, Annu. Rev. Fluid Mech. 49, 249 (2017)

    Article  ADS  Google Scholar 

  6. C. Marchioli, M. Fantoni, A. Soldati, Phys. Fluids 22, 033301 (2010)

    Article  ADS  Google Scholar 

  7. D. Kunhappan, B. Harthong, B. Chareyre, G. Balarac, P. Dumont, Phys. Fluids 29, 093302 (2017)

    Article  ADS  Google Scholar 

  8. N.S. Berman, Annu. Rev. Fluid Mech. 10, 47 (1978)

    Article  ADS  Google Scholar 

  9. A. Robert, T. Vaithianathan, L.R. Collins, J.G. Brasseur, J. Fluid Mech. 657, 189 (2010)

    Article  ADS  Google Scholar 

  10. S. Jin, L.R. Collins, New J. Phys. 9, 360 (2007)

    Article  ADS  Google Scholar 

  11. E. Wandersman, N. Quennouz, M. Fermigier, A. Lindner, O. Du Roure, Soft Matter 6, 5715 (2010)

    Article  ADS  Google Scholar 

  12. Y.N. Young, M.J. Shelley, Phys. Rev. Lett. 99, 058303 (2007)

    Article  ADS  Google Scholar 

  13. N. Quennouz, M. Shelley, O. du Roure, A. Lindner, J. Fluid Mech. 769, 387 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. C. Brouzet, G. Verhille, P. Le Gal, Phys. Rev. Lett. 112, 074501 (2014)

    Article  ADS  Google Scholar 

  15. B. Delmotte, E. Climent, F. Plouraboué, J. Comput. Phys. 286, 14 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. L.J. Fauci, C.S. Peskin, J. Comput. Phys. 77, 85 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  17. V. Eswaran, S. Pope, Comput. Fluids 16, 257 (1988)

    Article  ADS  Google Scholar 

  18. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)

    Article  ADS  Google Scholar 

  19. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, Vol. 73 (Oxford University Press, 1988)

  20. M.E. Rosti, A.A. Banaei, L. Brandt, A. Mazzino, Phys. Rev. Lett. 121, 044501 (2018)

    Article  ADS  Google Scholar 

  21. A. Gay, B. Favier, G. Verhille, EPL 123, 24001 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Climent.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulaiman, M., Climent, E., Delmotte, B. et al. Numerical modelling of long flexible fibers in homogeneous isotropic turbulence. Eur. Phys. J. E 42, 132 (2019). https://doi.org/10.1140/epje/i2019-11894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11894-7

Keywords

Navigation