Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. The European Physical Journal E
  3. Article

Rigidity and auxeticity transitions in networks with strong bond-bending interactions

  • Regular Article
  • Open access
  • Published: 04 September 2019
  • volume 42, Article number: 114 (2019)
Download PDF

You have full access to this open access article

The European Physical Journal E Aims and scope Submit manuscript
Rigidity and auxeticity transitions in networks with strong bond-bending interactions
Download PDF
  • Robbie Rens1 &
  • Edan Lerner1 
  • 446 Accesses

  • 11 Citations

  • Explore all metrics

Cite this article

Abstract.

A widely studied model for gels or biopolymeric fibrous materials are networks with central force interactions, such as Hookean springs. Less commonly studied are materials whose mechanics are dominated by non-central force interactions such as bond-bending potentials. Inspired by recent experimental advancements in designing colloidal gels with tunable interactions, we study the micro- and macroscopic elasticity of two-dimensional planar graphs with strong bond-bending potentials, in addition to weak central forces. We introduce a theoretical framework that allows us to directly investigate the limit in which the ratio of characteristic central-force to bending stiffnesses vanishes. In this limit we show that a generic isostatic point exists at \( z_c = 4\), coinciding with the isostatic point of frames with central-force interactions in two dimensions. We further demonstrate the emergence of a stiffening transition when the coordination is increased towards the isostatic point, which shares similarities with the strain-induced stiffening transition observed in biopolymeric fibrous materials, and coincides with an auxeticity transition above which the material’s Poisson’s ratio approaches -1 when bond-bending interactions dominate.

Graphical abstract

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. J.C. Maxwell, Philos. Mag. 27, 294 (1864)

    Article  Google Scholar 

  2. W.G. Ellenbroek, V.F. Hagh, A. Kumar, M.F. Thorpe, M. van Hecke, Phys. Rev. Lett. 114, 135501 (2015)

    Article  ADS  Google Scholar 

  3. C. Calladine, Int. J. Solids Struct. 14, 161 (1978)

    Article  Google Scholar 

  4. C. Heussinger, E. Frey, Phys. Rev. Lett. 97, 105501 (2006)

    Article  ADS  Google Scholar 

  5. G. Düring, E. Lerner, M. Wyart, Soft Matter 9, 146 (2013)

    Article  ADS  Google Scholar 

  6. C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  7. M. van Hecke, J. Phys.: Condens. Matter 22, 033101 (2010)

    ADS  Google Scholar 

  8. A.J. Liu, S.R. Nagel, Annu. Rev. Condens. Matter Phys. 1, 347 (2010)

    Article  ADS  Google Scholar 

  9. E. DeGiuli, G. Düring, E. Lerner, M. Wyart, Phys. Rev. E 91, 062206 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Yan, M. Wyart, Phys. Rev. Lett. 113, 215504 (2014)

    Article  ADS  Google Scholar 

  11. W.G. Ellenbroek, Z. Zeravcic, W. van Saarloos, M. van Hecke, EPL 87, 34004 (2009)

    Article  ADS  Google Scholar 

  12. P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, F. Zamponi, J. Stat. Mech. Theor. Exp. 2014, P10009 (2014)

    Article  Google Scholar 

  13. E. DeGiuli, E. Lerner, C. Brito, M. Wyart, Proc. Natl. Acad. Sci. U.S.A. 111, 17054 (2014)

    Article  ADS  Google Scholar 

  14. T.A. Nguyen, A. Newton, S.J. Veen, D.J. Kraft, P.G. Bolhuis, P. Schall, Adv. Mater. 29, 1700819 (2017)

    Article  Google Scholar 

  15. P. Schall, private communication

  16. W.H. Wang, J. Appl. Phys. 110, 053521 (2011)

    Article  ADS  Google Scholar 

  17. J.F. Lutsko, J. Appl. Phys. 65, 2991 (1989)

    Article  ADS  Google Scholar 

  18. C.P. Broedersz, X. Mao, T.C. Lubensky, F.C. MacKintosh, Nat. Phys. 7, 983 (2011)

    Article  Google Scholar 

  19. R. Rens, M. Vahabi, A.J. Licup, F.C. MacKintosh, A. Sharma, J. Phys. Chem. B 120, 5831 (2016)

    Article  Google Scholar 

  20. K.A. Jansen, A.J. Licup, A. Sharma, R. Rens, F.C. MacKintosh, G.H. Koenderink, Biophys. J. 114, 2665 (2018)

    Article  ADS  Google Scholar 

  21. R. Rens, C. Villarroel, G. Düring, E. Lerner, Phys. Rev. E 98, 062411 (2018)

    Article  ADS  Google Scholar 

  22. M. Merkel, K. Baumgarten, B.P. Tighe, M.L. Manning, Proc. Natl. Acad. Sci. U.S.A. 116, 6560 (2019)

    Article  ADS  Google Scholar 

  23. C.P. Goodrich, S. Dagois-Bohy, B.P. Tighe, M. van Hecke, A.J. Liu, S.R. Nagel, Phys. Rev. E 90, 022138 (2014)

    Article  ADS  Google Scholar 

  24. M. Wyart, Ann. Phys. (Paris) 30, 1 (2005)

    Google Scholar 

  25. E. Lerner, Eur. Phys. J. E 41, 93 (2018)

    Article  ADS  Google Scholar 

  26. D.M. Sussman, C.P. Goodrich, A.J. Liu, Soft Matter 12, 3982 (2016)

    Article  ADS  Google Scholar 

  27. C.L. Kane, T.C. Lubensky, Nat. Phys. 10, 39 (2014)

    Article  Google Scholar 

  28. J. Paulose, B.G.-g. Chen, V. Vitelli, Nat. Phys. 11, 153 (2015)

    Article  Google Scholar 

  29. M. Wyart, EPL 89, 64001 (2010)

    Article  ADS  Google Scholar 

  30. E. DeGiuli, A. Laversanne-Finot, G. Düring, E. Lerner, M. Wyart, Soft Matter 10, 5628 (2014)

    Article  ADS  Google Scholar 

  31. B.P. Tighe, Phys. Rev. Lett. 107, 158303 (2011)

    Article  ADS  Google Scholar 

  32. K. Baumgarten, B.P. Tighe, Phys. Rev. Lett. 120, 148004 (2018)

    Article  ADS  Google Scholar 

  33. C.P. Goodrich, private communication

  34. Y.M. Beltukov, JETP Lett. 101, 345 (2015)

    Article  ADS  Google Scholar 

  35. E. Lerner, E. DeGiuli, G. Düring, M. Wyart, Soft Matter 10, 5085 (2014)

    Article  ADS  Google Scholar 

  36. U.D. Larsen, O. Signund, S. Bouwsta, J. Microelectromech. Syst. 6, 99 (1997)

    Article  Google Scholar 

  37. W. Yang, Z.-M. Li, W. Shi, B.-H. Xie, M.-B. Yang, J. Mater. Sci. 39, 3269 (2004)

    Article  ADS  Google Scholar 

  38. D.R. Reid, N. Pashine, J.M. Wozniak, H.M. Jaeger, A.J. Liu, S.R. Nagel, J.J. de Pablo, Proc. Natl. Acad. Sci. U.S.A. 115, E1384 (2018)

    Article  ADS  Google Scholar 

  39. S.G. Stuij, M. Labbé-Laurent, T.E. Kodger, A. Maciolek, P. Schall, Soft Matter 13, 5233 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands

    Robbie Rens & Edan Lerner

Authors
  1. Robbie Rens
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Edan Lerner
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Edan Lerner.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rens, R., Lerner, E. Rigidity and auxeticity transitions in networks with strong bond-bending interactions. Eur. Phys. J. E 42, 114 (2019). https://doi.org/10.1140/epje/i2019-11888-5

Download citation

  • Received: 15 April 2019

  • Accepted: 09 August 2019

  • Published: 04 September 2019

  • DOI: https://doi.org/10.1140/epje/i2019-11888-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Soft Matter: Functional Materials and Nanodevices
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature