Skip to main content

Advertisement

SpringerLink
Statistical properties of thermally expandable particles in soft-turbulence Rayleigh-Bénard convection
Download PDF
Download PDF

Associated Content

Part of a collection:

Flowing Matter, Problems and Applications

  • Regular Article
  • Open Access
  • Published: 12 September 2019

Statistical properties of thermally expandable particles in soft-turbulence Rayleigh-Bénard convection

  • Kim M. J. Alards1,
  • Rudie P. J. Kunnen1,
  • Herman J. H. Clercx1 &
  • …
  • Federico Toschi1,2,3 

The European Physical Journal E volume 42, Article number: 126 (2019) Cite this article

  • 384 Accesses

  • 2 Citations

  • Metrics details

Abstract.

The dynamics of inertial particles in Rayleigh-Bénard convection, where both particles and fluid exhibit thermal expansion, is studied using direct numerical simulations (DNS) in the soft-turbulence regime. We consider the effect of particles with a thermal expansion coefficient larger than that of the fluid, causing particles to become lighter than the fluid near the hot bottom plate and heavier than the fluid near the cold top plate. Because of the opposite directions of the net Archimedes’ force on particles and fluid, particles deposited at the plate now experience a relative force towards the bulk. The characteristic time for this motion towards the bulk to happen, quantified as the time particles spend inside the thermal boundary layers (BLs) at the plates, is shown to depend on the thermal response time, \( \tau_{T}\), and the thermal expansion coefficient of particles relative to that of the fluid, \( K = \alpha_{p}/\alpha_{f}\). In particular, the residence time is constant for small thermal response times, \( \tau_{T} \lesssim 1\), and increasing with \( \tau_{T}\) for larger thermal response times, \( \tau_{T} \gtrsim 1\). Also, the thermal BL residence time is increasing with decreasing K. A one-dimensional (1D) model is developed, where particles experience thermal inertia and their motion is purely dependent on the buoyancy force. Although the values do not match one-to-one, this highly simplified 1D model does predict a regime of a constant thermal BL residence time for smaller thermal response times and a regime of increasing residence time with \( \tau_{T}\) for larger response times, thus explaining the trends in the DNS data well.

Graphical abstract

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A.S. Ackerman, M.P. Kirkpatrick, D.E. Stevens, O.B. Toon, Nature 432, 1014 (2004)

    Article  ADS  Google Scholar 

  2. R.A. Shaw, Annu. Rev. Fluid Mech. 35, 183 (2003)

    Article  ADS  Google Scholar 

  3. A.B. Kostinski, R.A. Shaw, Bull. Am. Meteorol. Soc. 86, 235 (2005)

    Article  ADS  Google Scholar 

  4. R. Reigada, R.M. Hillary, M.A. Bees, J.M. Sancho, F. Sagues, Proc. Biol. Sci. 270, 875 (2003)

    Article  Google Scholar 

  5. K.D. Squires, H.Y., Deep Sea Res. Part I: Oceanogr. Res. Pap. 42, 1989 (1995)

    Article  ADS  Google Scholar 

  6. G. Faeth, Prog. Energy Combust. Sci. 13, 293 (1987)

    Article  ADS  Google Scholar 

  7. S.L. Post, J. Abraham, Int. J. Multiphase Flow 28, 997 (2002)

    Article  Google Scholar 

  8. M. Okada, T. Suzuki, Int. J. Heat Mass Transfer 40, 3201 (1997)

    Article  Google Scholar 

  9. J.G.M. Kuerten, A.W. Vreman, Int. J. Multiphase Flow 87, 66 (2016)

    Article  MathSciNet  Google Scholar 

  10. E. Calzavarini, M. Cencini, D. Lohse, F. Toschi, Phys. Rev. Lett. 101, 084504 (2008)

    Article  ADS  Google Scholar 

  11. S. Douady, Y. Couder, M.E. Brachet, Phys. Rev. Lett. 67, 983 (1991)

    Article  ADS  Google Scholar 

  12. E.W. Saw, R.A. Shaw, S. Ayyalasomayajula, P.Y. Chuang, A. Gylfason, Phys. Rev. Lett. 100, 214501 (2008)

    Article  ADS  Google Scholar 

  13. R. Lakkaraju, L.E. Schmidt, P. Oresta, F. Toschi, R. Verzicco, D. Lohse, A. Prosperetti, Phys. Rev. E 84, 036312 (2011)

    Article  ADS  Google Scholar 

  14. R. Lakkaraju, R.J.A.M. Stevens, P. Oresta, R. Verzicco, D. Lohse, A. Prosperetti, Proc. Natl. Acad. Sci. U.S.A. 110, 9237 (2013)

    Article  ADS  Google Scholar 

  15. P. Oresta, R. Verzicco, D. Lohse, A. Prosperetti, Phys. Rev. E 80, 026304 (2009)

    Article  ADS  Google Scholar 

  16. Z. Wang, V. Mathai, C. Sun, Nat. Commun. 10, 3333 (2019)

    Article  ADS  Google Scholar 

  17. G. Ahlers, S. Grossmann, D. Lohse, Rev. Mod. Phys. 81, 503 (2009)

    Article  ADS  Google Scholar 

  18. F. Heslot, B. Castaing, A. Libchaber, Phys. Rev. A 36, 5870 (1987)

    Article  ADS  Google Scholar 

  19. V. Lavezzo, H. Clercx, F. Toschi, J. Phys.: Conf. Ser. 318, 052011 (2011)

    Google Scholar 

  20. P. Joshi, H. Rajaei, R.P.J. Kunnen, H.J.H. Clercx, Phys. Rev. Fluids 1, 084301 (2016)

    Article  ADS  Google Scholar 

  21. B. Arcen, A. Taniere, M. Khalij, Int. J. Heat Mass Transfer 55, 6519 (2012)

    Article  Google Scholar 

  22. J.G.M. Kuerten, C.W.M. van der Geld, B.J. Geurts, Phys. Fluids 23, 123301 (2011)

    Article  ADS  Google Scholar 

  23. S. Wetchagarun, J.J. Riley, Phys. Fluids 22, 063301 (2010)

    Article  ADS  Google Scholar 

  24. B. Lessani, M.H. Nakhaei, Int. J. Heat Mass Transfer 67, 974 (2013)

    Article  Google Scholar 

  25. M.H. Nakhaei, B. Lessani, Int. J. Heat Mass Transfer 106, 1014 (2017)

    Article  Google Scholar 

  26. P. Oresta, A. Prosperetti, Phys. Rev. E 87, 063014 (2013)

    Article  ADS  Google Scholar 

  27. S. Engelmann, Advanced Thermoforming (John Wiley & Sons, New Jersey, 2012)

  28. R. Verzicco, R. Camussi, J. Fluid Mech. 477, 19 (2003)

    Article  ADS  Google Scholar 

  29. E.P. van der Poel, R. Ostilla-Mónico, J. Donners, R. Verzicco, Comput. Fluids 116, 10 (2015)

    Article  MathSciNet  Google Scholar 

  30. E.E. Michaelides, Z. Feng, Int. J. Heat Mass Transfer 37, 2069 (1994)

    Article  Google Scholar 

  31. M.R. Maxey, J.J. Riley, Phys. Fluids 26, 883 (1983)

    Article  ADS  Google Scholar 

  32. V. Armenio, V. Fiorotto, Phys. Fluids 13, 2437 (2001)

    Article  ADS  Google Scholar 

  33. W.E. Ranz, W.R. Marshall, Chem. Eng. Prog. 48, 173 (1952)

    Google Scholar 

  34. M. van Aartrijk, H.J.H. Clercx, Phys. Fluids 22, 013301 (2010)

    Article  ADS  Google Scholar 

  35. M. van Aartrijk, H.J.H. Clercx, J. Hydro Environ. Res. 4, 103 (2010)

    Article  Google Scholar 

  36. R.M. Kerr, J. Fluid Mech. 310, 139 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

    Kim M. J. Alards, Rudie P. J. Kunnen, Herman J. H. Clercx & Federico Toschi

  2. Centre of Analysis, Scientific Computing, and Applications W&I, Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

    Federico Toschi

  3. Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185, Rome, Italy

    Federico Toschi

Authors
  1. Kim M. J. Alards
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Rudie P. J. Kunnen
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Herman J. H. Clercx
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Federico Toschi
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Federico Toschi.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alards, K.M.J., Kunnen, R.P.J., Clercx, H.J.H. et al. Statistical properties of thermally expandable particles in soft-turbulence Rayleigh-Bénard convection. Eur. Phys. J. E 42, 126 (2019). https://doi.org/10.1140/epje/i2019-11882-y

Download citation

  • Received: 28 March 2018

  • Accepted: 05 August 2019

  • Published: 12 September 2019

  • DOI: https://doi.org/10.1140/epje/i2019-11882-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Topical issue: Flowing Matter, Problems and Applications
Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

Flowing Matter, Problems and Applications

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.