Electrical stimulation of developmental forces reveals the mechanism of limb formation in vertebrate embryos


Current knowledge on limbs development lacks a physical description of the forces leading to formation of the limbs precursors or “buds”. Earlier stages of development are driven by large scale morphogenetic movements, such as dipolar vortical flows and mechanical buckling, pulled by rings of cells. It is a natural hypothesis that similar phenomena occur during limb formation. However it is difficult to experiment on the developmental forces, in such a complex dynamic system. Here, we report a physical study of hindlimb bud formation in the chicken embryo. We use electrical stimulation to enhance the physical forces present in the tissue, prior to limb bud formation. By triggering the physical forces in a rapid and amplified pattern, we reveal the mechanism of formation of the hindlimbs: the early presumptive embryonic territory is composed of a set of rings encased like Russian dolls. Each ring constricts in an excitable pattern of force, and the limb buds are generated by folding at a pre-existing boundary between two rings, forming the dorsal and ventral ectoderms. The amniotic sac buckles at another boundary. Physiologically, the actuator of the excitable force is the tail bud pushing posteriorly along the median axis. The developmental dynamics suggests how animals may evolve by modification of the magnitude of these forces, within a common broken symmetry. On a practical level, localized electrical stimulation of morphogenetic forces opens the way to in vivo electrical engineering of tissues.

Graphical abstract

This is a preview of subscription content, log in to check access.


  1. 1

    M.J. Cohn, J.C. Izpisua-Belmonte, H. Abud, J.K. Heath, C. Tickle, Cell 80, 739 (1995)

    Article  Google Scholar 

  2. 2

    H.V. Tanaka, N.Ch.Y. Ng, Z.Y. Yu, M.M. Casco-Robles, F. Mauro, P.A. Tsons, C. Chiba, Nat. Commun. 7, 11069 (2016)

    ADS  Article  Google Scholar 

  3. 3

    R.L. Johnson, C. Tabin, Cell 90, 979 (1997)

    Article  Google Scholar 

  4. 4

    M. Altabef, J.D. Clarke, C. Tickle, Development 124, 4547 (1997)

    Google Scholar 

  5. 5

    J.C. Casanova, V. Uribe, C. Badia-Careaga, G. Giovinazzo, M. Torres, J.J. Sanz-Ezquerro, Development 138, 1195 (2011)

    Article  Google Scholar 

  6. 6

    F.J. Nedelec, T. Surrey, A.C. Maggs, S. Leibler, Nature 389, 305 (1997)

    ADS  Article  Google Scholar 

  7. 7

    J. Lammerding, Comput. Physiol. 1, 783 (2011)

    Google Scholar 

  8. 8

    P.A. Janmey, C.A. McCulloch, Annu. Rev. Biomed. Eng. 9, 1 (2007)

    Article  Google Scholar 

  9. 9

    N. Bufi, P. Durand-Smet, A. Asnacios, Single-cell mechanics: The parallel plates technique, in Biophysical Methods in Cell Biology (Elsevier, Amsterdam, 2015) Chapt. 11

  10. 10

    F. Graner, J.A. Glazier, Phys. Rev. Lett. 69, 2013 (1992)

    ADS  Article  Google Scholar 

  11. 11

    G.W. Brodland, D.I.-L. Chen, J.H. Veldhuis, Int. J. Plastic. 22, 965 (2006)

    Article  Google Scholar 

  12. 12

    M. Unbekandt, P.M. del Moral, F.G. Sala, S. Bellusci, D. Warburton, V. Fleury, Mech. Dev. 125, 314 (2008)

    Article  Google Scholar 

  13. 13

    T. Savin, N.A. Kurpios, A.E. Shyer, P. Florescu, H. Liang, L. Mahadevan, C.J. Tabin, Nature 476, 57 (2011)

    Article  Google Scholar 

  14. 14

    V. Fleury, Organogenesis 2, 6 (2005)

    Article  Google Scholar 

  15. 15

    E. Farge, Curr. Biol. 13, 1365 (2003)

    Article  Google Scholar 

  16. 16

    P.-L. Bardet, B. Guirao, C. Paoletti, F. Serman, V. Leopold, F. Bosveld, Y. Goya, V. Mirouse, F. Graner, Y. Bellaiche, Dev. Cell 25, 534 (2013)

    Article  Google Scholar 

  17. 17

    Z. Tang, Y. Hu, Z. Wang, K. Jiang, C. Zhan, W.F. Marshall, N. Tang, Dev. Cell 44, 13 (2018)

    Article  Google Scholar 

  18. 18

    F. Le Noble, D. Moyon, L. Pardanaud, L. Yuan, V. Djonov, R. Mattheijssen, C. Breant, V. Fleury, A. Eichmann, Development 131, 361 (2004)

    Article  Google Scholar 

  19. 19

    A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126, 677 (2006)

    Article  Google Scholar 

  20. 20

    D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, A. Asnacios, Proc. Natl. Acad. Sci. U.S.A. 107, 16518 (2010)

    ADS  Article  Google Scholar 

  21. 21

    V. Fleury, Biosystems 109, 460 (2012)

    Article  Google Scholar 

  22. 22

    V. Fleury, N. Chevalier, F. Furfaro, J.-L. Duband, Eur. Phys. J. E 38, 6 (2015)

    Article  Google Scholar 

  23. 23

    V. Fleury, A.V. Murukutla, N. Chevalier, B. Gallois, M. Capellazzi-Resta, P. Picquet, A. Peaucelle, Phys. Rev. E 94, 022426 (2016)

    ADS  Article  Google Scholar 

  24. 24

    O.P. Boryskina, A. Al-Kilani, V. Fleury, Eur. Phys. J. Appl. Phys. 55, 21101 (2011)

    ADS  Article  Google Scholar 

  25. 25

    V. Fleury, O.P. Boryskina, A. Al-Kilani, C. R. Acad. Sci. Biol. 334, 505 (2011)

    Google Scholar 

  26. 26

    E. Rozbicki, M. Chuai, A.I. Karjalainen, F. Song, H.M. Sang, R. Martin, H.J. Knölker, M.P. MacDonald, C.J. Weijer, Nat. Cell. Biol. 17, 397 (2015)

    Article  Google Scholar 

  27. 27

    N. Tipping, D. Wilson, Anat. Rec. 294, 1143 (2011)

    Article  Google Scholar 

  28. 28

    D.P. Kiehart, Curr. Biol. 9, R602 (1999)

    Article  Google Scholar 

  29. 29

    H.C. Lee, H.J. Choi, T.S. Park, S.I. Lee, Y.M. Kim, S. Rengaraj, H. Nagai, G. Sheng, J.M. Lim, J.Y. Han, PLoS ONE 8, e80631 (2016)

    Article  Google Scholar 

  30. 30

    V. Fleury, Chaos, Solitons Fractals 105, 230 (2017)

    ADS  Article  Google Scholar 

  31. 31

    E.B. Wilson, The Cell and Development in Heredity, third edition (Macmillan, New York, 1928)

  32. 32

    T. Mikawa, A. Poh, K. Kelly, Y. Ishii, D. Reese, Dev. Dyn. 229, 422 (2004)

    Article  Google Scholar 

  33. 33

    V. Hamburger, H.L. Hamilton, J. Morphol. 88, 49 (1951)

    Article  Google Scholar 

  34. 34

    J.W. Valentine, Proc. Natl. Acad. Sci. U.S.A. 94, 8001 (1997)

    ADS  Article  Google Scholar 

  35. 35

    R. Wetzel, Vehr. Phys.-med. Ges. Würzburg 40, H.5 (1929)

    Google Scholar 

  36. 36

    R. Asai, Y. Haneda, D. Seya, Y. Arima, K. Fukda, Y. Kurihara, S. Miyagawa-Tomita, H. Kurihara, Sci. Rep. 7, 8955 (2017)

    ADS  Article  Google Scholar 

  37. 37

    M. Piccolino, Trends Neurosci. 20, 443 (1997)

    Article  Google Scholar 

  38. 38

    M. Levine, Mol. Biol. Cell 25, 835 (2014)

    Google Scholar 

  39. 39

    M. Louveaux, J.D. Julien, V. Mirabe, A. Boudaoud, O. Hamant, Proc. Natl. Acad. Sci. U.S.A. 26, 113 (2016)

    Google Scholar 

  40. 40

    Z. Kamran, K. Zellner, H. Kyriazes, C.M. Kraus, J.-B. Reynier, J.E. Malamy, BMC Dev. Biol. 17, 17 (2017)

    Article  Google Scholar 

  41. 41

    R. Keller, L. Davidson, A. Edlund, T. Elul, M. Ezin, D. Shook, P. Skoglund, Philos. Trans. R. Soc. London B: Biol. Sci. 355, 897 (2000)

    Article  Google Scholar 

  42. 42

    M. Popovic, A. Nandi, M. Merkel, R. Etournay, S. Eaton, F. Jülicher, G. Salbreux, New J. Phys. 19, 033006 (2017)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Vincent Fleury.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fleury, V., Murukutla, A.V. Electrical stimulation of developmental forces reveals the mechanism of limb formation in vertebrate embryos. Eur. Phys. J. E 42, 104 (2019). https://doi.org/10.1140/epje/i2019-11869-8

Download citation


  • Living systems: Biological Matter