Broadband dielectric spectroscopy to validate architectural features in Type-A polymers: Revisiting the poly(glycidyl phenyl ether) case

Abstract.

Broadband dielectric spectroscopy (BDS) is a powerful technique that allows studying the molecular dynamics of materials containing polar entities. Among a vast set of different applications, BDS can be used as a complementary tool in polymer synthesis. In this work, we will show how BDS can be used to validate architectural features in Type-A polymers, those having a net dipole moment component along the chain contour. Specifically, we will focus on the evaluation of the dielectric relaxation of poly(glycidyl phenyl ether) (PGPE) samples designed and synthesized with a variety of topologies and regio-orders: linear regio-regular chains synthesized from monofunctional and bifunctional initiators, macrocyclic regio-regular chains, and linear and macrocyclic regio-irregular chains. Our study highlights the impact of using BDS as a complementary characterization technique for providing topological details of polymers, which are otherwise not possible with many traditional techniques (e.g., NMR and mass spectrometry).

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1

    F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer-Verlag Berlin Heidelberg New York, Germany, 2003)

  2. 2

    W.H. Stockmayer, Pure Appl. Chem. 15, 539 (1964)

    Article  Google Scholar 

  3. 3

    J.C. Randall, in Encyclopedia of Polymer Science and Technology (John Wiley & Sons, 2008)

  4. 4

    J. Ochs, A. Veloso, D.E. Martínez-Tong, A. Alegria, F. Barroso-Bujans, Macromolecules 51, 2447 (2018)

    ADS  Article  Google Scholar 

  5. 5

    H. Yoshida, H. Watanabe, K. Adachi, T. Kotaka, Macromolecules 24, 2981 (1991)

    ADS  Article  Google Scholar 

  6. 6

    J. Ochs, D.E. Martínez-Tong, A. Alegria, F. Barroso-Bujans, Macromolecules 52, 2083 (2019)

    ADS  Article  Google Scholar 

  7. 7

    T. Gambino, A. Martínez de Ilarduya, A. Alegría, F. Barroso-Bujans, Macromolecules 49, 1060 (2016)

    ADS  Article  Google Scholar 

  8. 8

    M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, 2003)

  9. 9

    Prince E. Rouse jr., J. Chem. Phys. 21, 1272 (1953)

    ADS  Article  Google Scholar 

  10. 10

    C. Riedel, A. Alegría, P. Tordjeman, J. Colmenero, Macromolecules 42, 8492 (2009)

    ADS  Article  Google Scholar 

  11. 11

    S. Arrese-Igor, A. Alegría, J. Colmenero, Phys. Rev. Lett. 113, 078302 (2014)

    ADS  Article  Google Scholar 

  12. 12

    M. Gervais, A. Labbe, S. Carlotti, A. Deffieux, Macromolecules 42, 2395 (2009)

    ADS  Article  Google Scholar 

  13. 13

    B.A. Laurent, S.M. Grayson, J. Am. Chem. Soc. 128, 4238 (2006)

    Article  Google Scholar 

  14. 14

    F.M. Haque, A. Alegria, S.M. Grayson, F. Barroso-Bujans, Macromolecules 50, 1870 (2017)

    ADS  Article  Google Scholar 

  15. 15

    I. Asenjo-Sanz, A. Veloso, J.I. Miranda, J.A. Pomposo, F. Barroso-Bujans, Polym. Chem. 5, 6905 (2014)

    Article  Google Scholar 

  16. 16

    H. Vogel, Phys. Z. 22, 645 (1921)

    Google Scholar 

  17. 17

    G.S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925)

    Article  Google Scholar 

  18. 18

    G. Tammann, W. Hesse, Z. Anorg. Allg. Chem. 156, 245 (1926)

    Article  Google Scholar 

  19. 19

    J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edition (John Wiley & Sons, New York, 1980)

  20. 20

    N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Dover Publications, 1991)

  21. 21

    H. Watanabe, O. Urakawa, T. Kotaka, Macromolecules 26, 5073 (1993)

    ADS  Article  Google Scholar 

  22. 22

    J.A. Pomposo, I. Perez-Baena, L. Buruaga, A. Alegría, A.J. Moreno, J. Colmenero, Macromolecules 44, 8644 (2011)

    ADS  Article  Google Scholar 

  23. 23

    J. van Turnhout, M. Wübbenhorst, Novocontrol Dielectrics Newsletter, No. 14, November 2000

  24. 24

    A.-L. Brocas, A. Deffieux, N. Le Malicot, S. Carlotti, Polym. Chem. 3, 1189 (2012)

    Article  Google Scholar 

  25. 25

    M. Gervais, A.-L. Brocas, G. Cendejas, A. Deffieux, S. Carlotti, Macromolecules 43, 1778 (2010)

    ADS  Article  Google Scholar 

  26. 26

    E.A. Di Marzio, C.M. Guttman, Macromolecules 20, 1403 (1987)

    ADS  Article  Google Scholar 

  27. 27

    A.J.M. Yang, E.A. Di Marzio, Macromolecules 24, 6012 (1991)

    ADS  Article  Google Scholar 

  28. 28

    K. Ueberreiter, G. Kanig, J. Colloid Sci. 7, 569 (1952)

    Article  Google Scholar 

  29. 29

    K.U. Kirst, F. Kremer, T. Pakula, J. Hollingshurst, Colloid Polym. Sci. 272, 1420 (1994)

    Article  Google Scholar 

  30. 30

    L. Zhang, R. Elupula, S.M. Grayson, J.M. Torkelson, Macromolecules 50, 1147 (2017)

    ADS  Article  Google Scholar 

  31. 31

    A. Pipertzis, M.D. Hossain, M.J. Monteiro, G. Floudas, Macromolecules 51, 1488 (2018)

    ADS  Article  Google Scholar 

  32. 32

    L. Gao, J. Oh, Y. Tu, T. Chang, C.Y. Li, Polymer 170, 198 (2019)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Martínez-Tong.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez-Tong, D.E., Ochs, J., Barroso-Bujans, F. et al. Broadband dielectric spectroscopy to validate architectural features in Type-A polymers: Revisiting the poly(glycidyl phenyl ether) case. Eur. Phys. J. E 42, 93 (2019). https://doi.org/10.1140/epje/i2019-11859-x

Download citation

Keywords

  • Topical issue: Dielectric Spectroscopy Applied to Soft Matter