Skip to main content
Log in

Elemental and isotopic fractionation of noble gases in gas and oil under reservoir conditions: Impact of thermodiffusion

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Noble gases, and the way they fractionate, is a promising approach to better constrain origin, migration and initial state distributions of fluids in gas and oil reservoirs. Thermodiffusion, is one of the phenomena that may lead to isotope and elemental fractionation of noble gases. However, this effect, assumed to be small, has not been quantified, nor measured, in oil and gas under reservoir conditions. Thus, in this work, molecular dynamics simulations have been performed to compute the thermal diffusion factors of noble gases, in a dense gas (methane) and in an oil (n-hexane) under high pressures. Interestingly, it has been found that thermal diffusion factors, associated to both isotopic (36Ar, 40Ar) and elemental fractionations of noble gases (4He, 20Ne, 40Ar, 84Kr and 131Xe) in gas and oil, could be expressed as linear functions of the reduced masses. Regarding the amplitude of the phenomena, it has been found that, in a stationary 1D oil or gas fluid column, thermodiffusion due to a typical geothermal gradient has an impact on noble gas isotopic and elemental fractionation which is of the same order of magnitude than gravity segregation, but opposite in sign. In addition, the relative impact of thermodiffusion on isotopic and elemental fractionations depends on the fluid type which is another interesting feature. Thus, these first numerical results on isotopic and elemental fractionation of noble gases by thermodiffusion in simple pure gas and oil emphasize their interest as natural tracers that could be used to improve the pre-exploitation description of oil and gas reservoirs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ozima, F. Podosek, Noble Gas Geochemistry (Cambridge University Press, 2002)

  2. C.J. Ballentine, R. Burgess, B. Marty, Rev. Mineral. Geochem. 47, 539 (2002)

    Article  Google Scholar 

  3. P. Burnard, The Noble Gases as Geochemical Tracers (Springer, 2013)

  4. B. Marty, Geochem. J. 18, 157 (1984)

    Article  ADS  Google Scholar 

  5. J.W. Gibbs, Collected Works, Vol. 1: Thermodynamics (Yale University Press, New Haven, 1957)

  6. G. Galliero, F. Montel, Phys. Rev. E 78, 041203 (2008)

    Article  ADS  Google Scholar 

  7. G. Galliero, H. Bataller, F. Croccolo, R. Vermorel, P.A. Artola, B. Rousseau, V. Vesovic, M. Bou-Ali, J.M.O. de Zarate, S. Xu, K. Zhang, F. Montel, Microgravity Sci. Technol. 28, 79 (2016)

    Article  ADS  Google Scholar 

  8. B.H. Sage, W.N. Lacey, Trans. AIME 132, 120 (1939)

    Article  Google Scholar 

  9. L. Høier, C.H. Whitson, SPE Reserv. Eval. Eng. 4, 525 (2001)

    Article  Google Scholar 

  10. T. Holt, E. Lindeberg, K.S. Ratkje, SPE Paper 11761 (1983)

  11. C.H. Whitson, P. Belery, SPE Paper 28000 (1994)

  12. F. Montel, J. Bickert, A. Lagisquet, G. Galliero, J. Pet. Sci. Eng. 58, 391 (2007)

    Article  Google Scholar 

  13. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1981)

  14. G. Galliero, M. Bugel, B. Duguay, F. Montel, J. Non-Equilib. Thermodyn. 32, 251 (2007)

    Article  ADS  Google Scholar 

  15. S. Wiegand, J. Phys.: Condens. Matter 16, R357 (2004)

    ADS  Google Scholar 

  16. S. Srinivasan, M.Z. Saghir, Thermodiffusion in Multicomponent Mixtures: Thermodynamic, Algebraic, and Neuro-Computing Models (Springer Science & Business Media, 2012)

  17. W. Köhler, K.I. Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016)

    Article  ADS  Google Scholar 

  18. P. Ungerer, B. Tavitian, A. Boutin, Applications of Molecular Simulation in the Oil and Gas Industry (Technip, 2005)

  19. M. Zhang, F. Müller-Plathe, J. Chem. Phys. 125, 124903 (2006)

    Article  ADS  Google Scholar 

  20. M.J. Assael, J.M.P. Trusler, T.F. Tsolakis, Thermophysical Properties of Fluids. An Introduction to their Prediction (Imperial College Press, 1996)

  21. A. Mejia, C. Herdes, E.A. Müller, Ind. Eng. Chem. Res. 53, 4131 (2014)

    Article  Google Scholar 

  22. E.A. Müller, G. Jackson, Annu. Rev. Chem. Biomol. Eng. 5, 405 (2014)

    Article  Google Scholar 

  23. H. Hoang, S. Delage-Santacreu, G. Galliero, Ind. Eng. Chem. Res. 56, 9213 (2017)

    Article  Google Scholar 

  24. R.D. Gunn, P.L. Chueh, J.M. Prausnitz, AIChE J. 12, 937 (1966)

    Article  Google Scholar 

  25. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954)

  26. P.A. Artola, B. Rousseau, Phys. Rev. Lett. 98, 125901 (2007)

    Article  ADS  Google Scholar 

  27. G. Galliero, S. Srinivasan, M.Z. Saghir, High Temp.-High Press. 38, 315 (2008)

    Google Scholar 

  28. T. Schnabel, J. Vrabec, H. Hasse, J. Mol. Liq. 135, 170 (2007)

    Article  Google Scholar 

  29. A.J. Haslam, A. Galindo, G. Jackson, Fluid Phase Equilib. 266, 105 (2008)

    Article  Google Scholar 

  30. J.R. Mick, M.S. Barhaghi, B. Jackman, K. Rushaidat, L. Schwiebert, J.J. Potoff, J. Chem. Phys. 143, 114504 (2015)

    Article  ADS  Google Scholar 

  31. K.S. Shing, K.E. Gubbins, K. Lucas, Mol. Phys. 65, 1235 (1988)

    Article  ADS  Google Scholar 

  32. A.Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987)

    Article  ADS  Google Scholar 

  33. A.Z. Panagiotopoulos, N. Quirke, M. Stapleton, D.J. Tildesley, Mol. Phys. 63, 527 (1988)

    Article  ADS  Google Scholar 

  34. B. Widom, J. Chem. Phys. 39, 2808 (1963)

    Article  ADS  Google Scholar 

  35. B. Widom, J. Phys. Chem. 86, 869 (1982)

    Article  Google Scholar 

  36. R.P.M.F. Bonifácio, M.F.C. Gomes, E.J.M. Filipe, Fluid Phase Equilib. 193, 41 (2002)

    Article  Google Scholar 

  37. M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Oxford University Press, New York, 1987)

  38. H.C. Andersen, J. Comput. Phys. 52, 24 (1983)

    Article  ADS  Google Scholar 

  39. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Dinola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)

    Article  ADS  Google Scholar 

  40. F. Müller-Plathe, D. Reith, Comput. Theor. Polym. Sci. 9, 203 (1999)

    Article  Google Scholar 

  41. L.S. Darken, Diffusion, Trans. AIME 1975, 184 (1948)

    Google Scholar 

  42. J.M. Haile, Molecular Dynamics Simulation: Elementary Methods (John Wiley & Sons, Inc., New York, 1992)

  43. J.J. Ross, A literature survey of noble gas solubility measurements in formation brines to interpret tracer experiments, Bachelor’s Thesis, Ohio State University (2018)

  44. G. Galliero, S. Volz, J. Chem. Phys. 128, 064505 (2008)

    Article  ADS  Google Scholar 

  45. M. Yang, M. Ripoll, J. Phys.: Condens. Matter 24, 195101 (2012)

    ADS  Google Scholar 

  46. G. Galliero, B. Duguay, J.P. Caltagirone, F. Montel, Fluid Phase Equilib. 208, 171 (2003)

    Article  Google Scholar 

  47. C. Debuschewitz, W. Köhler, Phys. Rev. Lett. 87, 055901 (2001)

    Article  ADS  Google Scholar 

  48. E.W. Lemmon, M.L. Huber, M.O. McLinden, Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, REFPROP Version 8.0 (2007)

  49. D.A. de Mezquia, M.M. Bou-Ali, J.A. Madariaga, C. Santamaría, J. Chem. Phys. 140, 084503 (2014)

    Article  ADS  Google Scholar 

  50. I.C. Bourg, G. Sposito, Geochim. Cosmochim. Acta 72, 2237 (2008)

    Article  ADS  Google Scholar 

  51. J.G. Kirkwood, F.P. Buff, J. Chem. Phys. 19, 774 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  52. J. Milzetti, D. Nayar, N.F.A. van der Vegt, J. Phys. Chem. B 122, 5515 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Galliero.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, H., Nguyen, P., Pujol, M. et al. Elemental and isotopic fractionation of noble gases in gas and oil under reservoir conditions: Impact of thermodiffusion. Eur. Phys. J. E 42, 61 (2019). https://doi.org/10.1140/epje/i2019-11823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11823-x

Keywords

Navigation